Please use this identifier to cite or link to this item:
http://dspace.bstu.ru/jspui/handle/123456789/119
Title: | Статистическая значимость прогнозирования результатов производственного процесса с помощью искусственной нейронной сети |
Authors: | Макаров, А. Н. |
Keywords: | искусственная нейронная сеть машинное обучение организация производства длина обучающей выборки размерность Вапника-Червоненкиса статистический бутстрэп бэггинг |
Issue Date: | 2018 |
Publisher: | Издательство БГТУ им. В. Г. Шухова |
Abstract: | В результате проведенного исследования организации производственного процесса по созда- нию кровельных конструкций жилых многоэтажных зданий разработана искусственная нейронная сеть (ИНС), цель которой прогнозировать уровень производительности труда при заданных зна- чениях организационных факторов. Одной из главных задач на пути к ней является обучение ИНС по прецедентам выборки, извлеченной из объекта исследования. В виду недостатка обучающих дан- ных главной проблемой является определение условий статистической значимости прогнозов мо- дели, обученной на выборке ограниченной длины. Данная статья посвящена решению указанной про- блемы в рамках проведенного исследования. В работе использованы положения статистической теории обучения, использующие понятие размерности Вапника-Червоненкиса для описания слож- ности обучающего множества, а также подходы вероятностно-корректной в смысле аппрокси- мации модели обучения. Описаны технологии статистического бутстрэпа и бэггинга, позволяющие расширить имеющуюся обучающую выборку и увеличить точность прогнозирования. Обучение ИНС проводится с помощью компьютерного эксперимента с использованием языка программиро- вания Python. Получена оценка границ теоретической длины обучающей выборки, необходимой для получения с помощью ИНС результатов внутри заданного доверительного интервала ɛ=0,2 с уров- нем надежности 0,95. Извлеченная выборка преобразована на порядок, сопоставимый с теорети- ческой нижней границей. Произведено обучение ИНС с определением средней квадратической ошибки (MSE) на контрольной выборке, которая составила MSE=0,18. В статье определены теоретические границы сложности обучающего множества необходимого для обеспечения заданного уровня статистической значимости. При обучении ИНС на выборке, порядок которой увеличен в соответствии с полученным теоретически, достигнута ошибка прогнозирования на контрольных данных внутри заданного доверительного интервала. |
Description: | Макаров А.Н. Статистическая значимость прогнозирования результатов производственного процесса с помощью искусственной нейронной сети / А. Н. Макаров // Вестник БГТУ им. В. Г. Шухова. - 2018. - №3. - С. 117-123. |
URI: | http://dspace.bstu.ru/jspui/handle/123456789/119 |
Appears in Collections: | 2018 год |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
17. Макаров.pdf | 485.74 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.