МЕХАНИЧЕСКОЕ ОБОРУДОВАНИЕ И МАШИНОСТРОЕНИЕ

Мирошник М. А., д-р техн. наук, доц. Украинская государственная академия железнодорожного транспорта, г. Харьков Котух В. Г., канд. техн. наук, доц., с.н.с., Капцова Н. И., асс.

Харьковский национальный университете городского хозяйства им. А. Н. Бекетова

К ВОПРОСУ ОПТИМИЗАЦИИ ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА ГЕРМЕТИЗАЦИИ КОРПУСОВ ДАТЧИКОВ ДЛЯ ГАЗОВОГО ОБОРУДОВАНИЯ И ТРУБОПРОВОДНЫХ СИСТЕМ

marinagmiro@gmail.com

При разработке и проектировании датчиков для газового оборудования и трубопроводных систем (ГО и ТС) большое внимание уделяется повышению их эксплуатационной надежности. Эксплуатационная надежность датчиков для ГО и ТС обеспечивается прежде всего их общей герметизацией, стандартизацией схемотехнических и конструкторско-технологических решений, что способствует стабилизации технологических процессов их изготовления и контроля, а также комплексной оценкой и реализацией нормального теплового режима датчиков на всех этапах их разработки, проектирования и изготовления.

Ключевые слова: датчики, герметизация, многофункциональное покрытие, лазерная наплавка.

Введение. Необходимость общей герметизации корпусов датчиков для ГО и ТС накладывает ряд ограничений и требований к конструкции и технологии соединения их корпусных элементов, например, требований ремонтопригодности, ограничения нагрева корпусов датчиков при герметизации до 70° С, состава и давления газовой среды внутри датчиков, а также вероятности их безотказной работы.

Наиболее распространенным материалом корпусных деталей датчиков является алюминий и его сплавы. Однако при их герметизации возникает ряд проблем, связанных прежде всего с возможностью создания надежного сварного соединения Al-сплавов с другими металлами и сплавами. Поэтому для создания прочных связей соединяемых металлов необходимо образование многофункционального покрытия (МФП), основными элементами для которого являются Ni и Si. При этом возможность соединения разнородных металлов с образованием прочных связей с использованием МФП определяются прежде всего физико-химическими свойствами соединяемых металлов и применяемой технологией получения сварных соединений.

Особенности технологического процесса получения сварных соединений. Сравнение физических свойств Al, Ni и Si (табл. 1) показало, что Al, Ni, Si имеют одинаковый тип кристаллической решетки - кубическая гранецентрированная (КГЦ). Температура плавления Al (660°C) почти в 2 раза ниже, чем у Ni (1455°C) и Si (1415°C), что затрудняет процесс их сплавления. Существенное влияние оказывает также

большое различие (в 3-4 раза) коэффициентов теплопроводности и линейного расширения, приводящее к образованию таких температурных полей и условий кристаллизации, которые способствуют возникновению термических напряжений и ослаблению связей.

Решающее влияние на свариваемость этих металлов оказывает их металлургическая совместимость, которая определяется взаимной растворимостью соединяемых металлов как в жидком, так и в твердом состояниях. Надежные сварные соединения образуют металлы и сплавы, в состав которых входят элементы, обладающие неограниченной растворимостью не только в жидком, но и в твердом состоянии, т.е. образующие непрерывный ряд твердых растворов замещения.

Правильный подбор способа, режимов и технологии получения сварных соединений может полностью устранить или свести к минимуму отрицательные последствия ограниченной растворимости, особенно Ni в Al. При этом твердый раствор образуется в том случае, если в системе, состоящей из различных атомов, может существовать общая для них кристаллическая решетка. Неограниченная растворимость в твердом состоянии возможна при наличии одинаковой кристаллической структуры у компонентов, как в нашем случае у Al, Ni, Si. Однако это условие является необходимым, но не достаточным [4].

Анализ современных технологий получения сварных соединений показывает, что энергия нормальной ковалентной связи не зависит от

элементов, находящихся в химической связи, причем шкала электроотрицательности характеризует только образование связи между элементами, а с увеличением разности электроотрицательности увеличивается стабильность как первичных твердых растворов, так и интерметалли-

ческих соединений [3]. Основными факторами, определяющими размеры и параметры области первичных твердых растворов, являются размерный фактор, электроотрицательность и валентность.

Таблица 1

A.	•	
Физические	CROUCTRA	TEMPHTOR
THOM TOURNE	CDUNCIDA	JULVICITIOD

Элемент	Плотность при 20° кг/км	Температура плав- ления их, С	Тип кристалической решетки	Атомный радиус, · <i>10</i> ⁻¹ н М(А)	Элктроотрица- тельность	Коэффициент линейного р асширения .10- ⁶ , град ⁻¹	Коэффициент теплопроводности, Вт/м-град	Коэффициент теплоемкости Дж/кг град	
1. Элементы, содержащиеся в Al-сплавах									
Al	2700	660	кгц	1,43	1,47	24,0	204	880	
Mg	1740	650	кгц	1,60	1,23	-	167	-	
Si	2328	1415	кгц	1,34	1,74	-	84	-	
Zn	7100	419	кгц	1,39	1,60	30	112	370	
2. Элементы, содержащиеся в сплавах 29НК, 12К18Н10Т									
Fe	7800	1539	кгц	1,26	1,64	11,19	78	460	
Co	8900	1494	кгц	1,25	1,7	12,,5	70,9	452	
Ni	8900	1455	кгц	1,24	1,8	13,5	58	444	
Cr	7190	1903	кгц	1,27	1,6	-		-	
Ti	4500	1668	кгц	1,60	1,5	4,5	13	578	
3. Элементы, содержащиеся в Си сплавах									
Cu	8900	1083	кгц	1,28	1,9	16,5	390	380	
Be	1850	1285	кгц	2,2	1,4	-	1,78	-	

Для определения растворимости в алюминии Ni, Si, выбранных для лазерной наплавки на корпусные детали из Al-сплавов на основе теории Даркена-Гурри были построены диаграммы растворимости для Al и для Ni [3], которые необходимы для прогноза параметров твердых растворов Al - Ni, Al - Si, образующихся при лазерной наплавке МФП и сварке разнородных методов в узлах герметизации корпусных деталей датчиков для ГО и ТС. Достаточно хорошо растворимы в Al: Si, Mn, Cu, Fe, Co, вследствие чего можно ожидать образование прочных твердых растворов этих элементов в А1. Образование твердых растворов Ni в Al менее вероятно из-за его плохой растворимости в Аl. Построение диаграммы растворимости для Ni [3] показало. что в Ni хорошо растворяется Cu, Co, Si, Fe. В связи с этим можно ожидать образования прочных твердых растворов этих элементов в Ni, являющимся основой МФП. Из анализа построенных диаграмм [3] следует также ожидать образование прочного твердого раствора при лазерной наплавке МФП на основе Si, а при наплавке на основе Ni из-за его неограниченной растворимости в Al прочность сцепления МФП с Al-основой может оказаться недостаточной и должна быть исследована и определена экспериментально.

Таким образом, для узла герметизации кор-

пус - крышка (A1 - A1) датчиков предпочтительно МФП на основе Si, а для узлов герметизации электросоединитель - корпус датчика, штенгель - корпус датчика более предпочтительно МФП на основе Ni.

На основе данных табл. 1 и диаграмм [3] можно прогнозировать получение МФП для равновесных систем, например для получения сплавов системы Al - Ni в условиях медленных нагрева и охлаждения. Поэтому при применении наплавки традиционными способами нагрева (плазмой, эл.дугой и др.) не гарантируется получение прочной связи в системе Al – Ni.

Наиболее приемлемым способом наплавки Ni на Al может быть импульсный лазерный нагрев. Существующие лазерные технологические установки серии «Квант» (РФ) и др. обеспечивают длительность импульса лазерного излучения в пределах 1-8 мс и плотность мощности в зоне наплавки до $10^6\ Bm/cm^2$. При этом скорость нагрева и охлаждения зоны наплавки составляет $10^2\ ...\ 10^6\ zpad/c$. Известно [1], что сверхбыстрый нагрев и охлаждение вносят существенные изменения в процесс образования твердых растворов, что выражается в увеличении взаимной растворимости элементов, в т.ч. Ni в Al.

Следует отметить, что при рассмотрении

взаимодействия твердой и жидкой фаз при лазерной наплавке, диффузионные процессы на границе между твердым и жидким телом обладают той особенностью, что скорость их определяется интенсивностью диффузии в твердом теле, т.к. она обычно во много раз меньше скорости диффузии в жидкости. Процесс взаимодействия твердой и жидкой металлических фаз при наплавке сопровождается развитием гетерогенной диффузии в зоне контакта. Даже незначительное время их сосуществования способствует протеканию процессов гетерогенной диффузии в направлении установления фазового равновесия. Интенсивность протекания этих процессов температурой, длительностью определяется контактирования, градиентом концентраций и диффузионной подвижностью атомов [2]. На границе раздела фаз определяющей является стадия взаимодействия твердого металла с жидким. Развитие диффузионных процессов на стадии охлаждения закристаллизовавшегося металла в основном определяется временем нахождения металла при повышенных температурах. Для большинства элементов замещения их подвижность при переходе из жидкого состояния в твердое резко падает (коэффициенты диффузии уменьшаются на три - пять порядков), и длительность пребывания при повышенных температурах в реальных процессах наплавки оказывается недостаточной для существенного развития процессов диффузии.

Количественное решение задачи по гетерогенной диффузии примеси в зоне контакта твердой и жидкой фаз при частных граничных условиях приведено в работе [1]. Характер распределения примеси зависит от коэффициента распределения k, характеризующего различную растворимость элементов в твердой и жидкой градиента концентрации примеси на границе сплавления.

Значения коэффициентов диффузии Д зависят от температуры, концентрации, структуры, примесей и могут меняться в широких пределах $(10^{-7} ... 10^{-16} \text{ см}^2 \text{c}^{-1} \text{ и менее})$. Значение коэффициентов диффузии в жидкости в пределах 10^{-4} $...10^{-6}$ см 2 с $^{-1}$. Длительность контактирования в случае наплавки традиционными способами находятся в пределах от 0.01...0.5 c (смачивание) до 0.5... 10 *с* и более (наплавка, сварка) и от 0,002 до 0,006 с (лазерная наплавка и сварка) и зависит от погонной энергии и скорости.

Равновесный коэффициент распределения $(k_0 = C^T/C^K)$ в зависимости от легирующего элемента может быть больше или меньше единицы. Если происходит снижение температуры, то k_0 <1 (1 - 0,001 для систем, относящихся к

чисто эвтектическим). Если примесь повышает температуру плавления сплава, то $k_0 > 1$. При наличии интенсивного перемешивания, что характерно для лазерной наплавки и сварки, эффективное значение коэффициента распределесильно отличается от равновесного и достигает 1.

В общем случае значения эффективного коэффициента распределения определяются из уравнения, полученного К. Бартоном и др [2]: $\hat{k} = k_0 / [k_0 + (1 - k_0) exp(1 - f\delta_0 / \vec{A}^{*})], (1)$ где f - скорость увеличения толщины твердой фазы; δ_0 - толщина ламинарного слоя; $\mathbf{I}^{\mathbf{K}} = 10^{-5} \dots 10^{-4} c M^2 c^{-1}$.

Для большинства практических случаев неизвестны точные значения эффективного коэффициента распределения k, коэффициентов диффузии $\mathbf{\Lambda}^{\mathbf{T}}$ и $\mathbf{\Lambda}^{\mathbf{K}}$ и длительности контактирования. Точное определение этих величин в реальных сверхнеравновесных условиях лазерной наплавки связано с большими трудностями и не входит в задачу данных исследований. В работе [2] приведено решение для определения концентрации C^T и $C^{ж}$

$$C^{T} = \frac{\sqrt{A^{\mathbb{X}}}}{\sqrt{A^{T} + \sqrt{A^{\mathbb{X}}}}} \left[1 + \Phi\left(\frac{|x|}{2\sqrt{A^{T}}}\right) \right] \text{при } x \le 0 (2)$$

$$C^{\mathbb{X}} = \frac{\sqrt{A^{\mathbb{X}}}}{\sqrt{A^{\mathbb{X}} + \sqrt{A^{\mathbb{X}}}}} \left[1 + \Phi\left(\frac{|x|}{2A^{\mathbb{X}}}\right) \right] \text{при } x > 0 (3)$$

которые, однако не учитывают наличие двухфазной области и изменение коэффициентов диффузии от концентрации.

Предварительные исследования [3] показали, что при лазерной наплавки Ni на Al-сплав, несмотря на малую длительность процесса (4 мс), происходит образование в зоне контакта Al - Ni тонкой диффузионной прослойки толщиной мкм. Исходя из этого по известной формуле [1]:

$$v = k \sqrt{\Lambda^{T}} \tag{4}$$

 $y=k\sqrt{\overline{\mathcal{A}^{\mathsf{T}}}}$ (4) приближенно определен коэффициент диффузии Ni в Al, равный Д= $10^{-1}...10^{-2}$ см 2 с $^{-1}$, т.е. на несколько порядков превышает известные значения. Поэтому для более точного определения фактического коэффициента диффузии необходимо проведение специальных исследований.

Для обоснования технологических режимов лазерной наплавки Si и Ni на свариваемые кромки корпусных деталей датчика из А1-сплавов выполнен аналитический расчет:

- скорости наплавки, мм/мин и мм²/мин;
- количества проходов и слоев, необходимых для получения МФП на кромках с заданными размерами;

длительности наплавки, мин.

В расчетах на основании предварительных экспериментов принято:

- диаметр светового пятна d на поверхности кромки в пределах 0,6...0,8 мм;
- фокальная плоскость совпадает с поверхностью свариваемой кромки;
- коэффициент перекрытия наплавленных точек и дорожек $\kappa = 0.5$;
- частота следования импульсов лазерного излучения f=10 Гц;
- конструктивное исполнение свариваемой кромки определено исходя из следующих соображений:
- конструктивная прочность кромки корпусных деталей датчика не должна быть меньше заданной с учетом допустимого снижения запаса прочности, но не более 25 %.
- наплавление одного слоя Ni на кромку, обеспечивая его достаточное сцепление с основой, не гарантирует из -за его малой толщины получение прочного сварного соединения;
- для обеспечения плотного прилегания свариваемых кромок корпусных деталей датчика при сборке под сварку МФП должно иметь толщину с припуском на последующую мехобработку.

На основании этого разработана конструкция кромки с пазом глубиной 20...25 % толщины кромки под $M\Phi\Pi$ [1].

Скорость наплавки определяется по известной формуле [1]:

V = 60 *d *f (1 - k). мм/мин, для определения количества проходов наплавке одного слоя необходимо знать величину площади, наплавляемой за один проход.

$$V = 60 *d*f* \frac{hd^2}{4}*(1-k) \text{ MM}^2/\text{MUH}, (6)$$

а количество проходов n определим по формуле

$$S_n = (n+1)(1-k)S_1$$
, (7) где $S_1 = 1d$ - площадь первой дорожки,

 $S_n = 1b$ - площадь всех (n) дорожек.

Так как ширина кромки задана, то

$$b = (n+1)(1-k)d$$
, MM (8)

Отсюда определим количество проходов:
$$n = \frac{b}{d(1-k)} - 1;$$
 (9)

Количество наплавляемых слоев т определяется экспериментально:

$$m = \frac{h_{\text{M}\Phi\Pi}}{h_{\text{CJ}}},\tag{10}$$

толщина где одного слоя, $h_{\text{M}\Phi\Pi} = H_{\text{cvm}} - h$, MM.

По результатам предварительных экспериментов толщина наплавленного слоя $h_{\mathsf{M}\Phi\Pi}$ должна соответствовать $(1,2-1,3)(H_0-h)$, т.е.

незначительно возвышаться над поверхностью стенки корпуса или крышки датчика. Тогда

$$m = \frac{(1,2-1,3)(H_0-h)}{h_{\rm cn}}$$
 (11)
Авторами предложена формула для опреде-

ления длительности наплавки одного слоя:

$$t = \frac{S_n}{V_n} = \frac{b * l}{60 * f * \frac{h d^2}{4} (1 - k)}, \text{ мин.}$$
 (12)

Общую продолжительность процесса лазерного наплавления и образования МФП можно определить по формуле

$$t_{\text{M}\Pi\Phi} = mt_{\text{c}\pi} ,_{\text{M}H}$$
 (13)

Выводы. В ходе проведенных исследований установлено, что для получения МФП на основе Si на корпусных деталях датчика (Al - Al) не предвидится больших препятствий для получения прочных связей Si-покрытия на Al вследствие хорошей растворимости Si в Al. Необходимо экспериментально обработать технологические режимы подготовки поверхности деталей и лазерной наплавки на них Si.

Также для получения МФП на основе Ni на деталях узлов герметизации A1 - 29 НК и др. необходимо применить высокоскоростной нагрев импульсным лазерным излучением с целью увеличения растворимости Ni в Al. Необходимо проведение специальных экспериментов по определению фактической концентрации Ni в зоне соединения A1 - Ni с последующей разработкой технологических режимов подготовки поверхности и лазерной импульсной наплавки Ni на корпусные детали датчика Al-сплава.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Технологическая концепция лазерной герметизации радиоэлектронных модулей в корпусах из алюминиевых сплавов / Н. В. Замирец, В. Г. Котух, В. А. Шур, Т. Л. Алтухова // Технология приборостроения. 1996. N1. C. 84-87.
- 2. Экспериментальные исследования технологических режимов герметизации корпу-сов микроблоков радиоэлектронной аппаратуры / В. Г. Котух // Технология приборостроения. 1998. N1. C. 27-30.
- 3. Исследования механизма образования многофункционального покрытия на корпусных деталях радиоэлектронных модулей / Т. Л. Алтухова, В. Г. Котух // Технология приборостроения. 1998. N1.C. 38-42.
- 4. Технологическая концепция образования многофункционального покрытия на корпусных деталях датчиков аппаратуры из Al –сплавов лазерной наплавкой / В. Г. Котух, В. И. Степаненко, М. С. Тушева, О. Е. Деменко // Радиотехника. 2009. Вып. 157. С. 129 – 134.