Шошин Е. А., канд. техн. наук, доц., Петров Р. В., аспирант Саратовский государственный технический университет им. Ю.А. Гагарина

ТЕРМИЧЕСКАЯ УСТОЙЧИВОСТЬ УГЛЕВОД-МИНЕРАЛЬНЫХ КОМПЛЕКСОВ В СОСТАВЕ МОДИФИЦИРОВАННОГО ЦЕМЕНТНОГО КАМНЯ

Shoshin234@mail.ru

Методом рентгенографии изучена устойчивость углевод-минеральных комплексов в составе модифицированного цементного камня. Обнаружено, что термообработка модифицированного цементного камня приводит к разрушению углевод-минеральных комплексов, характер и количество образующихся продуктов определяется присутствующим углеводом.

Ключевые слова: цементный гель, углеводы, пространственная структура, рентгеновская дифракция.

В работе [1] предпринята попытка исследовать природу пассивирующей активности различных углеводов в отношении процессов гидратации портландцемента. Методами ПМР, ЯМР 13 С, 29 Si обнаружена различная адсорбционная активность глюкозы и сахарозы на силикатах и алюминатах, связанная с взаимным соответствием пространственного положения ОНгрупп углевода и ОН-групп гидроксильного покрова силиката или алюмината. Авторы приходят к выводу, что прочность комплексов углевод-СЅН определяется количеством ОН-групп углевода, участвующих в адсорбционном взаимодействии, наибольшее число которых (3 ОНгруппы) характерно для сахарозы. Обнаружено, что одновременно с сахарозой адсорбируется незначительное количество воды. Однако условия эксперимента (гидратация при 95°C, 4 часа) предполагают достаточно высокую степень гидратации клинкерных минералов и, следовательно, углеводы адсорбированы на термодинамически стабильных гидратных фазах. В то же время, взаимодействие углеводов с наноразмерными гидросиликатами, образующимися в первые часы гидратации цемента (25°C) [2] осталось за рамками исследования.

Наличие соадсорбированной воды свидетельствует о том, что углеводы встраиваются в гидратную оболочку гелевой частицы и, следовательно, могут влиять на эволюцию нанообразований. Характер этого влияния можно оценить по поведению гелевой системы в процессе термической дегидратации, когда уменьшение гидратных оболочек провоцирует толщины компактизацию геля. Последнее может сопровождаться изменением структуры адсорбционного углевод-силикатного комплекса как за счет удаления соадсорбированной воды, так и за счет перегруппировки водородных связей между ОНгруппами углевода и минеральной поверхности. Таким образом, целью данной работы явилось исследование поведения комплексов углевод продукты гидратации в процессе термической

дегидратации модифицированного цементного камня.

В качестве объекта исследования был выбран портландцемент Цем I 42,5 H, модифицированный изомерными дисахаридами сахароза, мальтоза, лактоза. Содержание углеводов составляло 1% от массы цемента. Образцы модифицированных цементных паст подвергались гидратации в течение 24 ч при н.у. с последующей сушкой при 30 и 110 °С до постоянной массы, структурные изменения слабозакристаллизованных фаз определялись с помощью рентгеновского дифрактометра общего назначения ДРОН 3.0 при параметрах съемки: Кα-Сu, катодный ток 25 мA, напряжение 25 кB, скорость съемки 2 град/мин.

Наибольший интерес представлял диапазон углов дифракции 6-12 град., где формируются отражения слабозакристаллизованных продуктов гидратации (гелевая фаза 1) [3]. Сравнительный анализ показывает, что в отсутствие углеводов увеличение температуры сушки с 30 до 110 °С приводит к разрушению эттрингитовой фазы (межплоскостное расстояние (м.р.) 9,73 A°) и образованию двух слабо выраженных рефлексов при углах дифракции $2\Theta = 6,4$ и 7,9 град. (м.р. 13,83 и 11,19 A° соотв.) (рис. 1).

Аналогичная картина характерна и для модифицированных образцов, однако число рефлексов, их характер и локализация существенно различаются — проявляется индивидуальность влияния углеводов на процессы трансформации исходной гелевой фазы 1 (рис. 2-4).

По влиянию на интенсивность рефлекса гелевой фазы 1 (м.р. 1,47-0,88 нм) углеводы можно расположить в ряд: Лактоза > Контрольный состав > Сахароза > Мальтоза (табл. 1). Однако если оценить степень падения интенсивности данного рефлекса в процессе термообработки, формируется следующий ряд: Контрольный состав (21,8%) — Лактоза (23,8%) — Мальтоза (32,3%) — Сахароза (37,5%). Данный ряд демон-

стрирует степень влияния углеводов на устойчивость гелевой фазы 1: среди рассмотренных

углеводов только лактоза способствует накоплению гелевой фазы 1, росту ее устойчивости.

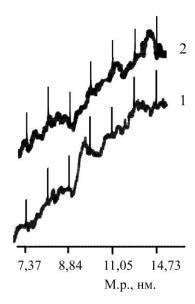


Рис. 1. Дифрактограммы немодифицированных образцов. Температура сушки: 1 - 30 °C, 2 - 110 °C.

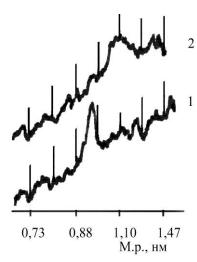


Рис. 3. Дифрактограммы образцов, модифицированных мальтозой. Температура сушки: 1-30 °C, 2-110 °C.

Учитывая, что в состав слабозакристаллизованных продуктов гидратации могут входить как гидросиликаты, так и Ca(OH)₂, была проанализирована активность взаимодействия углеводов с Ca(OH)₂. Как видно из данных табл. 1, присутствие любых углеводов многократно снижает интенсивность рефлекса портландита (в большинстве случаев – до нуля) – т.е. углеводы стабилизируют Ca(OH)₂ в аморфном состоянии. Однако с ростом температуры стабилизирующая сила углеводов меняется неодинаково. Так, например, в присутствие мальтозы портландит не образуется во всем диапазоне температур, в присутствие лактозы портландит в следовых количествах образуется только при высокотем-

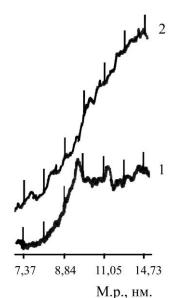
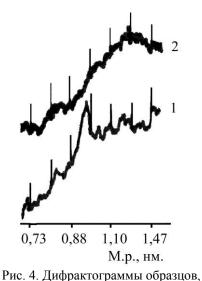



Рис. 2. Дифрактограммы образцов, модифицированных сахарозой. Температура сушки: 1 - 30 °C, 2 - 110 °C.

модифицированных лактозой.
Температура сушки: 1- 30 °C, 2- 110 °C.
пературной обработке, в случае же сахарозы портландит всегда присутствует, хотя и в незначительных количествах. Таким образом, мальтоза наиболее активно участвует в связывании Ca(OH)₂.

Влияние углеводов на цементный гель было оценено по изменению интенсивности рефлекса СSH (I)-фазы в области м.р.=0,33-0,26 нм [4]. В присутствие углеводов содержание этой фазы значительно ниже, чем в контрольном составе. Однако при термообработке модифицированных образцов наблюдается разнонаправленный прирост интенсивности данного рефлекса: Мальтоза (+11,8%) – Лактоза (-5,3%) – Сахароза (-39,5%). Таким образом, сахароза проявля-

ет наибольшую негативную активность в отношении CSH (I)-фазы, препятствуя ее формиро-

ванию.

Таблица 1

Относительные интенсивности рефлексов образцов модифицированных цементных паст

	Отношения интенсивностей аналитических рефлексов фаз, Ј/АБФ*									
Модификатор	Сушка 30°С					Сушка 110°С				
	CSH II	Портлан-	Эттрин-	CSH I	Гелевая	CSH II	Портлан-	Эттрин-	CSH I	Гелевая
		дит	ГИТ		Фаза 1		ДИТ	ГИТ		Фаза 1
-	0,72	0,95	0,23	12,04	1,60	0,47	1,02	0,00	7,00	1,25
Мальтоза	0,57	0,00	0,12	1,27	0,65	0,57	0,00	0,03	1,42	0,44
Лактоза	0,58	0,00	0,11	1,31	1,68	0,49	0,06	0,00	1,25	1,28
Сахароза	0,55	0,04	0,10	2,25	0,96	0,57	0,07	0,03	1,36	0,60

^{* -} интенсивность сигнала алито-белитовой фазы (АБФ)

Сравнивая полученные ряды с динамикой изменения других рефлексов (табл. 1) и учитывая, что исходный объем продуктов гидратации постоянный и не зависит от температуры термообработки, можно сделать вывод, что гелевая фаза 1 трансформируется не только в портландит и в CSH (I)-гель, но и в рентгеноаморфные продукты. Присутствие углеводов резко увеличивает долю рентгеноаморфных фаз в составе продуктов гидратации цемента, что создает иллюзию остановки гидратационных процессов: объемы эттрингита и гелевой фазы 1 в контрольном составе и модифицированных образцах сопоставимы, тогда как содержание портландита в модифицированных составах исчезающе мало, а содержание CSH (I)-геля снижено в 5-9 pa₃.

Анализ поведения модифицированных систем при нагревании показал, что углеводы в силу своих структурных различий образуют наиболее прочные комплексы с определенными фазами цементного камня: мальтоза — с $Ca(OH)_2$, лактоза - с гелевой фазой 1, а сахароза формирует стабильные комплексы как с гидросиликатами, так и с Са(ОН)2. Причину универсальной активности сахарозы, по-видимому, следует искать в особенностях ее структуры - сахароза единственный углевод в рассматриваемом ряду, не участвующий в процессах раскрытия цикла (таутомерные переходы), что обеспечивает максимальное число ОН-групп, единовременно участвующих в процессе адсорбционного взаимодействия. Следовательно, способность углевода к участию в таутомерных переходах увеличивает «специализацию» углевода, т.е. преимущественное взаимодействие с отдельными фазами цементного камня, последнее влияет на эволюцию гидратирующейся цементной системы в целом.

Выводы

Таким образом, углеводы образуют с продуктами гидратации цемента комплексы, обла-

дающие индивидуальными структурными и физико-химическими свойствами; структура углевода определяет характер эволюции гидратных фаз, природа углевода определяет термическую устойчивость углевод-минеральных комплексов и характер продуктов их разрушения.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Benjamin J. Smith, Aditya Rawal, Gary P. Funkhouser, Lawrence R. Roberts, Vijay Gupta, Jacob N. Israelachvili, Bradly F. Chmelka. Origins of saccharide-dependent hydration at aluminate, silicate, and aluminosilicate surfaces // PNAS. 2011. vol. 108, no.22. pp. 8949-8954.
- 2. Macar J.M.; Chan G.W.; Esseghaier K.Y. A peak in the hydration reaction at the end of the cement induction period // Journal of materials science. 2007. v.42, no. 4. pp.1388-1392.
- 3. Иващенко Ю.Г., Козлов Н.А. Исследование влияния комплексного органоминерального модификатора на процессы структурообразования и кинетику набора прочности цементных композиций // Вестник Белгородского государственного технологического университета им. Шухова. Серия: Стр-во и архитектура. 2011. №4 (49). С. 15 18.
- 4. Jeffry J. Chen, Jeffry J. Thomas, Hal F.W. Taylor, Hamlin M. Solubility and structure of calcium silicate hydrate // Jennings-Cement and Concrete Research. 2004. Vol. 34. pp. 1499-1519.