Шайхиев И. Г., д-р техн. наук, проф., Фасхутдинова З. Т., аспирант, Абдуллин И. Ш., д-р техн. наук, проф., Казанский национальный исследовательский технологический университет Свергузова С. В., д-р техн. наук, проф. Белгородский государственный технологический университет им. В.Г. Шухова

ВЛИЯНИЕ ПАРАМЕТРОВ ВЧ ПЛАЗМЫ ПОНИЖЕННОГО ДАВЛЕНИЯ НА ЭФФЕКТИВНОСТЬ УДАЛЕНИЯ УГАРОМ С ВОДНОЙ ПОВЕРХНОСТИ МАСЛА ТП-22

rtkzn13@mail.ru

Исследованы сорбционные характеристики отхода валяльно-войлочного производства (угар) по отношению к компрессорному маслу марки ТП-22. Показано, что обработка угара высокочастотной плазмой пониженного давления способствует увеличению маслоемкости и гидрофобности. Найдено, что плазменная обработка не изменяет структуры биополимеров кератина шерсти и целлюлозных составляющих, входящих в состав угара, а лишь изменяет структуру поверхности.

Ключевые слова: масло турбинное, отход валяльно-войлочного производства, удаление с водной поверхности, модификация плазмой.

Наиболее эффективным способом очистки поверхностных вод от разливов нефти и нефтепродуктов является сорбционная очистка. В качестве сорбентов используются материалы природного и искусственного происхождения, обладающих высокой нефтеемкостью. Однако, сдерживающим фактором использования сорбентов для ликвидации разливов нефтепродуктов является их относительная дороговизна. В связи с этим, актуальной становится задача поиска эффективных и дешевых сорбционных материалов (СМ) для удаления нефти и продуктов ее переработки. Особый интерес в этом плане представляют альтернативные реагенты из отходов промышленного и сельскохозяйственного производства.

Ранее [1] было показано, что кноп, отход производства валяльно-войлочных изделий, обработанный в потоке высокочастотной (ВЧ) плазмы пониженного давления, является хорошим СМ для извлечения нефтей [1,2] и технических масел [3-5] с твердой и водной поверхности.

В связи с вышеизложенным, исследована возможность использования в качестве СМ для удаления масел из водных сред угара — отхода валяльно-войлочного производства, который образуется при очистке шерсти, засоренной репьем. Угар имеет в составе репейные остатки и волокна шерсти большей длины, чем волокна кнопа. Содержание шерсти в угаре составляет 54 %, целлюлозных растительных остатков - 46 %.

Исследованы сорбционные характеристики угара по отношению к маслу марки ТП-22, входящему в состав промышленных стоков.

Первоначально определялись значения маслоемкости в статических и динамических условиях и максимального водопоглощения,

которые составили 19,68 г/г; 8,21 г/г и 3,98 г/г соответственно.

целью увеличения маслоемкости и C снижения водопоглощения исследуемого СМ, обработка угара проводилась В высокочастотной (ВЧ) плазмы пониженного Исследовалось ВЧ давления. влияние низкотемпературной плазменной обработки СМ на его сорбционные свойства по отношению к маслу марки ТП-22, также на увеличение гидрофобности. Первоначально в качестве плазмообразующих газов использовались воздух, смеси пропана с бутаном, аргона воздухом, аргона с пропаном в соотношениях 70:30.

Режимы с варьированием параметров, при которых проводилась плазменная обработка, приведены в таблице 1.

Полученные после плазмообработки образцы угара использовались для определения маслоемкости по отношению к маслу марки ТП-22 в статических и динамических условиях. Полученные данные приведены в таблице 2, из которых следует, что плазмообработка угара способствует повышению его максимальной маслоемкости по исследуемому сорбату и снижению водопоглощения.

Масло образует на поверхности воды плавающий слой. При нанесении сорбента на эту поверхность вместе с поглощением происходит также поглощение воды, уменьшает маслоемкость СМ. В этой связи в последующем исследовалось влияние параметров плазменной обработки водона маслопоглощение угара. Для проведения экспериментов на поверхность воды при 20 °C приливалось 3 мл исследуемого наносился 1 г исследуемого СМ.

Таблица 1

Режимы обработки угара ВЧ плазмой пониженного давления

№ режима	Входные параметры обработки						
обработки	Газ - носитель	Соотношение	Р, Па	I _a , A	U _a , кВ	t, мин	Q, г/сек
1	Пропан-бутан	70:30					
2	Аргон-воздух	70:30	26,6	0,5	7,5	1	0,06
3	Аргон-пропан	70:30					
4	Воздух						
5	Пропан-бутан	70:30					
6	Аргон-воздух	70:30	12.2	0,5	7,5	1	0,02
7	Аргон – пропан	70:30	13,3				
8	Воздух						
9	Аргон – воздух	70:30	26,6	0,8	7,5	30	0,06
10	Аргон- пропан	70:30	20,0				

P - давление в рабочей камере, Πa ; I_a - сила тока на аноде, A; U_a - напряжение на аноде, κB ; Q - расход плазмообразующего газа, Γ сек.

Таблица 2 Значения максимальной маслоемкости и водопоглощения плазмообработанных образцов угара в статических и динамических условиях

Режим	Маслое	Максимальное	
плазмообработки	Статические условия	Динамические условия	водопоглощение, г/г
1	21,75	9,39	1,15
2	21,18	9,12	1,42
3	21,44	9,21	1,34
4	21,56	9,04	1,29
5	20,89	8,92	1,45
6	20,83	8,89	1,32
7	21,90	9,46	1,07
8	20,85	9,25	1,48
9	21,67	9,08	1,35
10	21,36	9,23	1,40
Угар	19,68	8,21	3,98

По окончании контактирования угар с поглощенной водой и маслом удалялся, а остаточное количество масла в воде определялось экстракцией последнего CCl₄, что

позволило определить количество сорбированного масла и воды. Полученные значения масло- и водопоглощения приведены в таблице 3.

Таблица 3 Значения масло— и водопоглощения для плазмообработанных образцов угара в эксперименте с маслом марки ТП-22

Pe-	Суммарное значе-	Водо-	Масло-	Степень удаления	Изменение		
жим	ние водо- и масло-	поглощение,	поглощение, г/г	масла, %	водопоглощения,		
	поглощения, г/г	Γ/Γ			%		
1	3,69	1,05	2,64	98,14	-75,06		
2	3,83	1,21	2,62	97,40	-72,18		
3	3,95	1,34	2,61	97,03	-68,17		
4	4,04	1,42	2,62	97,40	-66,27		
5	3,81	1,20	2,61	97,03	-71,50		
6	3,95	1,32	2,63	97,78	-68,65		
7	3,77	1,13	2,64	98,14	-73,16		
8	4,04	1,44	2,60	96,65	-65,80		
9	3,97	1,36	2,61	97,03	-67,70		
10	3,74	1,10	2,64	98,14	-73,87		
Угар	6,46	4,21	2,25	83,64			

По данным, приведенным в таблице 3, очевидно, что наибольшей степенью удаления масла и гидрофобностью обладают образцы угара, обработанные в режимах №1 и 7, т.е. подвергнутые ВЧ плазменной обработке в атмосфере аргона с пропаном и пропана с бутаном.

В связи с вышеизложенным, в дальнейшем проводилась обработка еще 30 образцов СМ путем варьирования значений I_a , U_a , и t в атмосфере как смеси пропана с бутаном, так и в смеси аргона с пропаном, в соотношениях 70:30 соответственно. Режимы проведения обработки приведены в таблице 4. Образцам угара,

ВЧ обработанным плазмой пониженного давления в атмосфере смеси аргона с пропаном присвоили обозначение 11а-25а, пропана с бутаном 116-256, соответственно. Подвергнутые обработке плазмой образцы СМ исследовались для удаления исследуемого сорбата в количестве 3 мл с водной поверхности. Условия проведения эксперимента описаны ранее.

Полученные значения масловодопоглощения плазмообработанных образцов угара приведены в таблице 5, из которых очевидно, что обработка угара в среде смеси газов аргона с пропаном и пропана с бутаном способствует снижению сорбшии воды увеличению поглощения масла, т.е. придает гидрофобные свойства поверхности исследуемого СМ и увеличивает олеофильность. Данное обстоятельство подтверждается снижением водопоглощения, значений максимального полученных в экспериментах с дистиллированной водой. Найдено, что наилучшие гидрофобные достигнуты образцами показатели ВЧ плазмой обработанными пониженного давления в режимах № 11а, 17а и 17б. Ввиду того, что степень удаления масла исследуемыми достаточно высока. В последующих CM экспериментах объем масла марки ТП-22 на поверхности воды увеличился до 5 и 7 мл на 50 мл воды. Исследовалось действие образцов угара, обработанных ВЧ плазмой при вышеназванных

режимах с параметрами, приведенными в таблице Методика проведения эксперимента 4. соответствовала описанной ранее. Время контактирования сорбата с СМ составило 15 минут, дальнейшее увеличение взаимодействия, как показали проведенные эксперименты, не влияло на изменение сорбционных показателей образцов угара. Полученные значения водопоглощения приведены в таблице 6.

Таблица 4 Режимы проведения плазмообработки угара в атмосфере смеси пропана с бутаном и смеси аргона с пропаном (70:30)

№ режима Изменяемые параметры плазмообработки* U_a, кВ Ia, A t, мин 11 1,5 12 0,6 2,0 13 2,5 14 3,0 1 15 3,5 0,3 16 17 0,4 2,5 18 0,5 19 0,7 20 0,8 21 3 22 5 0,6 2,5 23 10 24 15 20 25

Значения масло— и водопоглощения для образцов угара после плазмообработки в атмосфере аргона с пропаном (11a-25a) и пропана с бутаном (11б-25б) в эксперименте с маслом марки ТП-22

№ образца	Суммарное поглощение масла и воды, г/г	Маслопо- глощение, г/г	Водопоглощение, г/г	Степень удаления масла, %	Изменение водопоглощения, %
11а/11б	3,64/3,76	2,66/2,64	0,98/1,12	98,88/98,14	-76,72/-73,40
12а/12б	3,73/3,85	2,63/2,62	1,10/1,23	97,78/97,38	-73,87/-70,78
13а/13б	3,78/3,84	2,62/2,64	1,16/1,20	97,38/98,14	-72,45/-71,50
14а/14б	3,62/3,82	2,64/2,64	0,98/1,18	98,14/98,14	-76,72/-71,94
15а/15б	3,70/3,69	2,65/2,63	1,05/1,06	98,51/97,78	-75,06/-74,82
16а/16б	3,85/3,79	2,64/2,62	1,21/1,17	98,14/97,38	-71,26/-72,21
17а/17б	3,58/3,62	2,65/2,66	0,93/0,96	98,51/98,88	-77,91/-77,20
18а/18б	3,81/3,85	2,63/2,62	1,18/1,23	97,78/97,38	-71,97/-70,78
19а/19б	3,68/3,95	2,64/2,64	1,04/1,31	98,14/98,14	-75,30/-68,88
20а/20б	3,94/3,84	2,63/2,63	1,31/1,23	97,78/97,78	-68,88/-71,50
21а/21б	3,88/3,77	2,62/2,63	1,26/1,14	97,38/97,78	-70,07/-72,92
22а/22б	3,87/3,65	2,63/2,63	1,24/1,02	97,78/97,78	-70,55/-75,77
23а/23б	3,65/3,77	2,64/2,62	1,01/1,15	98,14/97,38	-76,01/-72,68
24а/24б	3,71/3,88	2,63/2,64	1,08/1,24	97,78/98,14	-74,35/-70,55
25а/25б	3,62/3,84	2,63/2,63	0,99/1,21	97,78/97,78	-76,48/-71,26
Угар	6,46	2,25	4,21	83,64	

Как видно из приведенной таблицы 6, наибольшая степень очистки от масла марки ТП-22 и наименьшее водопоглощение наблюдается при использовании угара,

обработанного плазмой в атмосфере смеси пропана с бутаном в режиме № 17б.

Степень удаления исследуемого масла при использовании плазмообработанных образцов

^{*}Постоянные параметры: P=26,6 Па; Q=0,06 г/сек. Tаблица 5

угара превысила 98 %. Обработка способствует уменьшению значения водопоглощения по

сравнению с немодифицированным угаром.

Таблица 6 Значения масло– и водопоглощения для образцов угара в экспериментах с маслом марки ТП-22 (количество масла 5 и 7 мл)

№ образца	Суммарное поглощение масла и воды, г/г	Маслопо- глощение, г/г	Водопогло- щение, г/г	Степень удаления масла, %	Изменение водопо- глощения, %		
Объем масла на поверхности воды 5 мл (4,49 г)							
Угар	7,23	4,35	2,88	96,88			
11a	5,86	4,41	1,45	98,21	-49,65		
17a	5,73	4,43	1,30	98,66	-54,86		
17б	5,65	4,44	1,21	98,88	-57,99		
Объем масла на поверхности воды 7 мл (6,28 г)							
Угар	9,18	6,15	3,03	97,93			
11a	7,99	6,19	1,80	98,57	-40,59		
17a	7,95	6,19	1,76	98,57	-41,91		
17б	7,91	6,20	1,71	98,71	-43,56		

Идентичность химического строения биополимеров исходного и образцов угара, обработанных высокочастотной плазмой гидрофобном режиме в смеси пропана и бутана в соотношении 70:30, подтверждается данными ИК-спектроскопии. Проанализировав спектральные картины, найдено, что плазменная обработка в гидрофобном режиме не отражается химическом составе волос шерсти изменяется целлюлозных остатков, но реакционная способность, что выражается в изменении интенсивности полос поглощения. В частности, увеличение интенсивности пика в области 3600–3000 см⁻¹ свидетельствует

увеличении количества межмолекулярных водородных связей с —OH - группами, что способствует дополнительному структурированию кератина шерсти и целлюлозных составляющих угара.

Подтверждением вышесказанному служат исследования исходного и плазмообработанного угара и компонентов, входящих в его состав методом рентгеноструктурного анализа (РСА), которым показано, что более кристаллической структурой обладает исследуемый СМ, модифицированный в потоке плазмы (режим 17б). Исходный угар имеет более выраженную аморфную структуру (рис. 1).

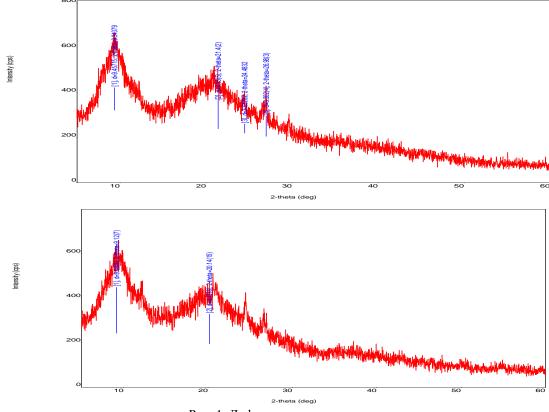


Рис. 1. Дифрактограммы угара: a - исходный образец; δ - образец, модифицированный ВЧ плазмой пониженного давления

Вышеприведенные исследования свойств угара исходного образцов И угара, обработанных высокочастотной плазмой, показали, что, варьируя параметрами плазменной обработки онжом различным образом изменять активность функциональных кератина шерсти и целлюлозных составляющих угара, вызывая повышение или понижение их реакционной способности, не приводящих к изменению в их составе.

Таким образом, определены параметры ВЧ плазмы пониженного давления, при обработке которой образцов угара достигаются наибольшая степень удаления масла марки ТП-22 с водной поверхности и наименьшее водопоглощение: плазмообразующий газ — смесь пропана с бутаном в соотношении 70:30, давление в рабочей камере P=26,6 Па, сила тока на аноде Ia=0,4 А, напряжение на аноде Ia=2,5 кВ, расход плазмообразующего газа Ia=0,06 г/сек, время обработки Ia=1 минута.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. *Шайхиев*, *И.Г.* Модификация альтернативного сорбента для повышения нефтеемкости и гидрофобности / И.Г. Шайхиев, Р.Х. Низамов, И.Ш. Абдуллин, С.В. Фридланд //

Защита окружающей среды в нефтегазовом комплексе. - 2010. - № 4. - С. 24-27.

- 2. *Шайхиев, И.Г.* Отходы от переработки шерсти для очистки водных акваторий от нефти / И.Г. Шайхиев, Р.Х. Низамов, С.В. Степанова // Экспозиция. Нефть. Газ. 2010. № 4. С. 11-14.
- 3. *Шайхиев, И.Г.* Влияние обработки ВЧ-плазмой пониженного давления на эффективность удаления отходом валяльновойлочного производства с водной поверхности масла ТП-22 / И.Г. Шайхиев, З.Т. Фазуллина, И.Ш. Абдуллин, И.Г. Гафаров // Вестник Казан. технол, ун-та. 2011. № 19. С. 42-48.
- 4. *Шайхиев, И.Г.* Влияние обработки ВЧ-плазмой пониженного давления на эффективность удаления с водной поверхности масла КС-19 отходом валяльно-войлочного производства / И.Г. Шайхиев, З.Т. Фазуллина, И.Ш. Абдуллин, И.Г. Гафаров // Вестник Казан. технол. ун-та. 2012. № 4. С. 126-128.
- 5. *Шайхиев*, *И.Г.* Влияние обработки ВЧ-плазмой пониженного давления на эффективность удаления с водной поверхности масла И-20А отходом валяльно-войлочного производства / И.Г. Шайхиев, З.Т. Фазуллина, И.Ш. Абдуллин, И.Г. Гафаров // Вестник Казан. технол. ун-та. 2012. № 5. С. 105-109.