Павленко В. И., д-р техн. наук, проф., Едаменко О. Д., канд. техн. наук, доц., Ястребинский Р. Н., канд. физ.-мат. наук, доц., Черкашина Н. И., аспирант Белгородский государственный технологический университет им. В.Г. Шухова

РАДИАЦИОННО-ЗАЩИТНЫЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ НА ОСНОВЕ ПОЛИСТИРОЛЬНОЙ МАТРИЦЫ

kafnx@intbel.ru

Представлена технология получения композиционных материалов для радиационной защиты на основе полистирольной полимерной матрицы, модифицированной гидрофобным олигомерным полиэтилтиосиликонатом свинца (ПЭТСС).

Полученные композиты обладают высокими физико-механическими характеристиками, высоким удельным сопротивлением (10¹⁴ Ом см) и способностью эффективно удерживать внедренный радиационный заряд. На исследованных диэлектрических образцах полимерных композитов с 80 % наполнением ПЭТСС электрическое поле объемного заряда, нарастающее во времени при электронном облучении ПК, резко снижает мощность поглощенной дозы за образцом (на 73–91 %), включая тормозное излучение.

Ключевые слова: полимерный композит, полиэтилтиосиликонат свинца (ПЭТСС), полистирольная матрица, электронное облучение, внедренный заряд.

Анализ отечественной и зарубежной литературы свидетельствует об обширных исследованиях в области разработки полимерных композиционных материалов, защищающих ОТ ионизирующего излучения [1-2]. Например, компания GE Plastics разработала новый ряд композитных материалов защищающих от радиоактивного излучения, обладающего высокими показателями жесткости и ударопрочности. HSG-композиты (HSG = high specific gravity), плотность которых приближается к плотности свинца, состоят из нейлона, армированного вольфрамом, который обладает высоким удельным весом и при этом гораздо менее токсичен, чем свинец, традиционно применяемый для радиационной защиты. Другие исследования, проведенные сотрудниками NASA, привели к разработке нового сверхпрочного материала (RXF1), родственного полиэтилену, который собираются использовать при сборке космических кораблей будущего. Этот материал намного прочнее и легче алюминия [2].

Однако, все разработанные на данный момент радиационно-защитные полимерные материалы и композиты имеют комплекс технологических, физико-технических и эксплуатационных недостатков, не позволяющих использовать КА 10–15 и более лет. Таким образом, одним из актуальных является направление по разработке высокоэффективных радиационно-защитных полимерных композиционных материалов, наполненных металлическими частицами. Композиционные материалы для радиационной защиты создавались на основе полистирольной полимерной матрицы, наполненной гидрофобным олигомерным полиэтилтиосиликонатом свинца (ПЭТСС). Полистирол относится к числу наиболее радиационно-стойких полимеров относительно процесса радиационной деструкции, что объясняется эффективной делокализацией поглощенной энергии по ароматическим циклам макромолекул [3].

Для создания композита использовали жесткий аморфный ударопрочный полистирол марки УПС-825 (ГОСТ 28250-89), в дальнейшем ПС, с молекулярной массой М = 300000 и структурным элементарным звеном [4]:

$$\begin{bmatrix} \mathbf{CH}_2 - \mathbf{CH} \mathbf{CH}_2 \\ \mathbf{CH}_2 \end{bmatrix}_n \qquad (1)$$

Элементный состав ПС, % масс: С – 92,31; H – 7,69.

Формирование полупроводниковых зон в металлоолигомерном наполнителе проводили из раствора содержащего этилсиликонат натрия ГКЖ–10 (ТУ-6-02-696-86) и водный раствор соли Pb(HS)₂.

Схемы протекания химических превращений при синтезе ПЭТСС можно представить следующим образом (формулы 2–4):

$$Pb^{2+} + 2OH^{-} \longrightarrow Pb(OH)_{2}$$

$$\begin{array}{cccc}
R & R \\
HO-Pb-O-Si-O-Si-O-Pb-S-H + 2Pb(OH)_{2} & \underbrace{t}_{-4H_{2}O} & Pb \\
OH & SH & O-Si-O-Pb-S \\
O-Si-O-Pb-S \\
R & R
\end{array}$$
(3)

D

По данным ИК-спектроскопии, криоскопического метода анализа и масс-спектроскопии примерная схема элементарного звена олигомерной цепи образующегося ПЭТСС, представляется следующим образом:

•		<u>۱</u>		
Pb-S-P	b-O-Si-O	-~		
6	Υ			(4)
R-Si-O-P	b-S-Pb			
~ -0		J	n	

где R=C₂H₅, n=12. Молекулярная масса элементарного звена олигомера составляет 1102.

Элементарный состав и молекулярная масса синтезированного металлолигомера приведены в таблице 1. Насыпная плотность ПЭТСС составляет 2100–2250 кг/м³, а максимальная плотность при уплотнении достигает 5920 кг/м³.

Таблица 1

Элементарный состав и молекулярная масса (М) олигомерного порошка ПЭТСС

Олигомер	Элементный состав, % масс.						$\overline{\mathbf{M}}$
	Si	S	Pb	0	Н	С	101
ПЭТСС	5,43	5,79	74,86	8,68	0,9	4,34	13224

Композиционные материалы получали смешением порошкообразного ПС и наполнителя в смесителе, их механоактивацией в струйной мельнице, последующим смешением композиции с пластифицирующей добавкой синтетической жирной кислотой – СЖК, фракции С₁₇–С₂₁ (ГОСТ 23239–88) в количестве 0,5 % масс. на вальцах при температуре 468–473 К в течение 10 мин., гранулированием на двухшнековом экс-

трудере и дальнейшей переработкой методом горячего прессования.

В результате проведенных исследований были установлены физико-механические и диэлектрические характеристики разработанного полимерного композиционного материала на основе полистирольной матрицы, наполненной полиэтилтиосиликонатом свинца (80% масс.) (табл. 2).

Таблица 2

Физико-механические свойства ПК полученного методом горячего прессования с 80% наполнением ПЭТСС

Показатель		Параметр ПК	
Плотность, кг/м ³		4490	
Предел прочности, МПа:	при изгибе б _{изг} , МПа	32	
	при кручении б _{круч} , МПа	28	
	при растяжении δ_{pact} , МПа	17	
	при сжатии б _{сж} , МПа	88	
Модуль продольной упругости, Е, МПа		$0,78 \cdot 10^4$	
Ударная вязкость по Шарпи с надрезом, А, кДж/м ²		18,6	
Относительное удлинение при разрыве, є, %		0,22	
Твердость по Роквеллу, HV, кгс/мм ²		18	
Температура размягчения по Вика, °К		425	

Для проведения имитационных радиационных испытаний полимерных композитов применялся подход, согласно которому проводилось разделение и выявление радиационных эффектов в испытуемом объеме, зависящих от дозы излучения. Этот подход позволяет значительно упростить методику радиационных испытаний.

Образцы ПК, изготовленные в форме дисков диаметром 50 мм и толщиной 1–20 мм, устанавливали на пути электронного пучка, перпендикулярно падающего на плоскую поверхность диска. За облучаемым образцом вплотную к его внешней поверхности закрепляли дозиметр, который был экранирован от попадания электронов, рассеянных в конструкции ускорителя.

Чувствительным элементом дозиметра служил алмазный детектор, представляющий собой пластину площадью 0,25 см² и толщиной 300 мкм с напылением на плоской поверхности диска запирающим и инжектирующим контактами. Детектор позволял проводить длительное (несколько часов) облучение ПК без заметной деградации параметров чувствительного элемента.

Анализ коэффициентов отражения и поглощения электронов в ПК показывает, что в широком энергетическом спектре электронов 73–91 % энергетических частиц приходится на поглощение в материале. На исследованных диэлектрических образцах полимерных композитов с 80 % наполнением ПЭТСС подтверждается тот факт, что электрическое поле объемного заряда, нарастающее во времени при электронном облучении ПК, резко снижает мощность погло2011, №3 щенной дозы за образцом, включая тормозное излучение. В широком энергетическом спектре

излучение. В широком энергетическом спектре быстрых электронов 73–92 % энергетических частиц приходится на поглощение в ПК. При $E_e>1$ МэВ возрастает эффект отражения электронов в диэлектрическом ПК.

По данным электронно-микроскопического анализа (рис. 1) структура поверхности ПК, подвергнутого обработке в пучке быстрых электронов, зависит не столько от энергии электронов, как от накопленной дозы. Наиболее сильное влияние электронного пучка на структуру поверхностного слоя композита проявляется для высокоэнергетического излучения электронов с E>2 МэВ и накопленной интегральной дозе D = 2 МГр.

На фотографиях микроструктуры видно, что при облучении электронами с E = 6,2 МэВ при D = 0,2 МГр на поверхности ПК происходит формирование микротрещин с размером 5–10 мкм. Происходит также образование крупных конгломератов полимерных молекул с размером частиц до 25 мкм. Увеличение дозы облучения до 0,66 МГр способствует развитию микротрещин, их размер увеличивается до 50 мкм.

При дозе в 1,0 МГр структура поверхностного слоя ПК резко перестраивается; крупные каналы практически исчезают и происходит формирование замкнутых пороподобных структур, размером примерно 4–20 мкм, заполненные коксом – продуктом термодеструкции ПК. Наряду с мелко дисперсными фазами наблюдается также образование большого количества дислокаций и дислокационных петель.

Рисунок 1. Электронные фотографии микроструктуры (×6250) исходного (1) полимерного композита и подвергнутого облучению быстрыми электронами с энергией 6.2 МэВ и накопленной дозой: 2 – 0,2 МГр; 3 – 0,66 МГр; 4 – 1,0 МГр; 5 – 2,0 Мгр. а) поверхность; б) скол при поверхностном слое

Особый интерес вызывает характер поверхности ПК при поглощенной дозе 2 МГр. Радиационные точечные дефекты стекают в устье трещин, что приводит к их росту. Вновь происходит образование микротрещин размером 15–25 мкм, но обращает внимание их направленный характер. Расстояние между соседними микротрещинами достигает 110–120 мкм. Поверхность участков между микротрещинами сплошная и плотная с отдельными конгломератами небольших размеров (до 10 мкм).

На рисунке 1 представлены фотографии микроструктуры поперечного среза тонких (5 мм) композиционных дисков из полимерных композитов, облученных дозой от 0,2 до 2 МГр. Отчетливо видны две области, разделенные рез-кой границей. Темная область – полистирольная матрица, подвергнутая термоокислительной де-

струкции, а внутри расположена более светлая область в виде свилей неокисленного термопласта сшитого с олигомерным ПЭТСС. С увеличением дозы от 0,2 до 0,66 МГр межфазная граница становится более резкой и ее характер непрерывно меняется, что свидетельствует о нестационарном характере протекающих процессов.

При дозе в 2 МГр структура среза резко изменяется; граница между фазами сглаживается, что может быть результатом образования оплавленного слоя. Наиболее высокая однородность полимерного композита достигается при двухстороннем облучении образца с дозой по 2 МГр.

Глубина образующихся трещин на поверхности композита (практически совпадает с толщиной окисленного слоя полимера) пропорциональна корню квадратному поглощенной дозе и при дозе 2 МГр достигает 400 мкм (табл. 3).

Таблица 3

Зависимость глубины поверхностных трещин от поглощенной дозы облучения ПК быстрыми электронами (E=6,2 МэВ)

Поглощенная доза, МГр	Глубина трещины, мкм	Глубина окисленного слоя, мкм	
0,2	—	100	
0,66	225	250	
1,4	310	320	
2,0	400	430	

При облучении диэлектриков электронами с высокой энергией наблюдается их объемная радиационная электризация, выражающаяся в аккумулировании заряда и на конечном этапе в образовании фигур Лихтенберга в процессе электрического пробоя. В разрядных каналах за счет испаренного вещества формируются фрактальные кластерные частицы. При облучении диэлектрического композита электронным пучком, когда эффективный пробег электронов меньше толщины облучаемого образца, наблюдается электрический пробой внедренного в диэлектрик электронного заряда на ближайшую поверхность к области залегания максимальной плотности объемного заряда, т.е. в зоне максимального значения напряженности электрического поля.

Итогом работы является создание диэлектрического радиационно-защитного композиционного материала с высоким удельным сопротивлением (10¹⁴ Ом·см) и способностью эффективно удерживать внедренный радиационный заряд. Полученные при исследованиях этого материала результаты свидетельствуют о достаточно высоких физико-механических показателях высоконаполненного ПК на основе ударопрочного полистирола. Созданные композиты могут быть использованы в качестве конструкционных материалов при проектировании аппаратов авиационно-космического назначения.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Акишин, А.И. Электрический пробой радиационно-заряженных диэлектриков при имитации воздействия космических излучений [Текст] / А.И. Акишин // Перспективные материалы. – 2005. – №3. – С.5–15.

2. Акишин, А.И. Физические условия в космическом пространстве и их воздействие на космические аппараты [Текст] / А.И. Акишин, И.В. Гецелев, Е.В. Горчаков // Сб. трудов «50 лет научно-исследовательскому институту ядерной физики им. Д.В. Скобельцына» / М.: Изд-во МГУ, 1996. – С. 94–108.

3. Зезин, А.А. Влияние степени кристалличности на образование ион-радикалов в облученном изотактическом полистироле [Текст] / А.А. Зезин, В.И. Фельдман, А.В. Егоров // Доклады Академии наук. 2004, Т. 394, №5.– С. 631–635.

4. Наночастицы серебра, стабилизированные на поверхности микросфер полистирола [Текст] / М.А. Ясная [и др.] // Академиздатцентр «Наука» РАН. Неорганические материалы. – 2009. – Т. 45. № 1. – С. 21 – 25.