Фомина Е. В., канд. техн. наук, доц., Кожухова Н. И., аспирант

Белгородский государственный технологический университет им. В.Г. Шухова

ФИТОТЕСТИРОВАНИЕ КОМПОЗИЦИОННЫХ ВЯЖУЩИХ С ПРИМЕНЕНИЕМ ТЕХНОГЕННОГО СЫРЬЯ КУМ*

fomina.katerina@mail.ru

В работе проведено фитотестирование композиционных вяжущих естественного и автоклавного твердения с применением техногенного сырья КУМ. Установлено, что рассматриваемые композиционные вяжущие не обладают повышенными показателями токсичности и могут быть рекомендованы для производства строительных материалов с минимальной степенью отрицательного воздействия на биологические индивиды.

Ключевые слова: техногенное сырье, аргиллит, фитотоксичность, композиционное вяжущее, автоклавная обработка.

Многотоннажные залежи техногенного сы-Коркинского угольного месторождения (КУМ) занимают значительную площадь территорий разработки в виде отвалов. Годовой выход попутных пород добычи угля составляет более 40 млн. т. В большинстве случаев они не находят практического применения и загрязняют прилегающие территории. В связи с полиминеральностью и генетическими особенностями отходы КУМ характеризуются большим разнообразием в микростроении, типе и характере структурных связей. Для исключения накопления техногенных отходов и наиболее полного использования извлеченных из недр основных и попутных ископаемых основным направлением их утилизации является использование этих пород в качестве сырьевого компонента в составе строительных композитов полифункционального назначения.

Некондиционные алюмосиликатные попутнодобываемые породы являются реакционноактивными компонентами по отношению к щелочам и поэтому находят широкое применение в цементных [1], грунто-известковых [2], геополимерных [3], известково-кремнеземных вяжущих автоклавного твердения [4]. Применение сырья КУМ в составе композиционных вяжущих позволяет существенно снизить энергоемкость производства вяжущих, улучшить их эксплуатационные свойства и значительно расширить номенклатуру сырьевых материалов. При этом следует отметить экологическую целесообразность с существенным снижением прессинга на экосферу среды обитания и жизнедеятельности в системе человек - материал - среда обитания.

По химическому составу отходы углеобогащения близки к традиционному глинистому сырью. Преобладающей горной породой в углеотходах является аргиллит [5]. Строительные материалы, изготовленные на основе этого техногенного сырья, способны оказывать различ-

ные виды негативного воздействия на биологические индивиды. В связи с этим актуальным является оценка биологической позитивности вяжущих на основе техногенного сырья и материалов на их основе.

Целью данного исследования является установление степени экологической безопасности композиционных вяжущих естественного и автоклавного твердения с применением вскрышной породы КУМ – аргиллит.

Оценка степени экологической безопасности вяжущих с применением техногенного сырья проводилась с помощью методики фитотестирования на семенах высших растений. Фитотест является унифицированным методом, в соответствии с которым установление класса опасности и уровня безвредности отхода по фитотоксическому действию осуществляется по определенным параметрам фитотоксичности. Он основан на способности тест-культуры адекватно реагировать на экзогенное химическое воздействие путем изменения интенсивности прорастания корня, что позволяет длину последних принять за показатель тест-функции.

В качестве исследуемых материалов использовали композиционное вяжущее состоящие из следующих материалов: аргиллит КУМ, известь ОАО «Стройматериалы» (Белгород); кварцевый песок Нижне-Ольшанского месторождения; портландцемент ОАО «Белгородский цемент» марки ЦЕМ І 42,5 Н. Формовали составы вяжущих на основе цемента естественного твердения при замене 50% кварцевого песка на аргиллит (ЦВА), традиционные составы композиционного вяжущего автоклавного твердения при замене 50% кварцевого песка на аргиллит (КВА).

Образцы цементного вяжущего твердели в стандартных условиях в течение 28 суток. Образцы композиционного вяжущего увлажнялись до пластичной консистенции и автоклавирова-

лись при температуре 183° С по режиму: подъем давления пара до 10 атм -2 часа, выдержка при рабочем давлении -6 часов, снижение давления пара -2 часа.

Подготовку проб полученных вяжущих проводилась в соответствии с методическими рекомендациями [6]. Образцы исследуемых вяжущих измельчались до грубодисперсного состояния. Для определения диапазона фитотоксического действия приготавливались растворы путем последовательного разбавления нативных экстрактов вяжущих дистиллированной водой в соотношениях 1:10, 1:100 и 1:500.

В качестве тест-культуры использовали неповрежденные семена овса. Контрольной средой для проращивания тест-культуры являлась дистиллированная вода.

Методика проведения фитотестирования

включала в себя следующие этапы: экстракты выдерживали в течение 2 суток, затем помещали в чашки Петри (по 5 мл каждого раствора) с фильтровальной бумагой по поверхности дна, совместно с тест-культурой (по 25 зерен каждой пробы) с предварительно определенной всхожестью, составляющей не менее 95%. После приготовления образцы помещали в термостат на 28 суток.

При проведении эксперимента было проведено 3 замера в возрасте 3, 7 и 28 суток. Производили замер длины корней тест-культуры, причем измерение осуществляли для максимально длинных порослей.

Модельная среда растворов вяжущих отличалась повышенным рН, и с течением времени щелочность среды увеличивалась (табл. 1).

Таблииа 1

Изменение рН растворов разбавленных нативных экстрактов вяжущих

Возраст	ЦВА			КВА			КВ			Контрольная среда
	1:10	1:100	1:500	1:10	1:100	1:500	1:10	1:100	1:500	-
1 час	9,78	9,12	8,97	12,12	10,90	9,56	12,02	10,40	9,32	6,7
7 суток	10,43	9,26	9,06	12,18	11,05	9,60	12,13	10,90	9,50	6,7
28 суток	10,68	9,37	9,12	12,74	11,13	9,75	12,23	10,98	9,87	6,7

Исходя из того, что расчетный способ оценки фитотоксичности дает усредненную характеристику влияния экстрактов, учитывая лишь длину корня наиболее активного зерна тест-культуры, поэтому независимо от расчетных данных предварительно проводили визу-

альную оценку токсичности экстракта.

Уже на 3 сутки фитотестирования на основании визуальной оценки наблюдалось проявление степени фитоэффекта на тест-культуре в зависимости от используемого экстракта вяжущего (рис.1).

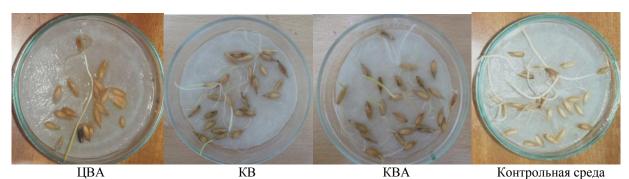


Рис. 1. Интенсивность прорастания тест-культуры в различных видах экстракта. Разбавление 1:100, 3 сутки

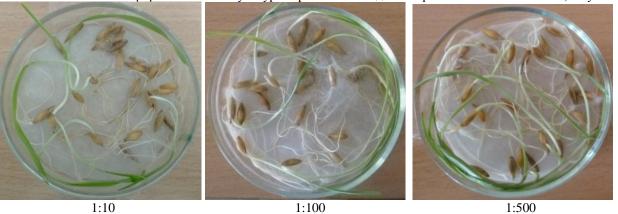


Рис. 2. Интенсивность прорастания тест-культуры в различных концентрациях экстракта КВА на 7 сутки

Визуальная оценка образцов позволяет предположить, что водный раствор составов вяжущих с применением аргиллита является благоприятной средой для прорастания зерен тесткультуры, следовательно, имеют минимальную степень токсичности. Необходимо отметить, что динамика развития роста тест-культуры при воздействии водного экстракта ЦВА замедленна по отношению к рассматриваемым составам.

Для расчетной оценки фитоэффекта (эффекта торможения) исследуемых материалов была использована методика, которая базируется на экспериментально установленной зависимости величины фитотоксического эффекта от разведения водного экстракта. В качестве вы-

ходного параметра выступает величина ET - эф-фект торможения, рассчитываемая по формуле (1).

$$E_T = \frac{L_k - L_{on}}{L_{\nu}} \cdot 100\% \ (1),$$

где L_{on} – средняя длина корней тест-культуры в рабочем растворе, мм; L_k – средняя длина корней тест-культуры в контрольном растворе, мм.

Используя полученные экспериментальные данные, были построены графические зависимости фотоэффекта от концентрации и типа экстракта, приведенные на рисунке 3.

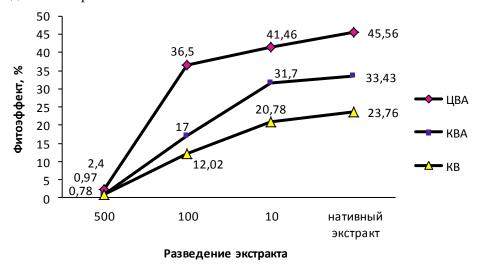


Рис. 3. Динамика фитоэффекта в зависимости от концентрации и типа экстракта

Проводя сравнительную оценку расчетных показателей фитоэффекта, следует, что вяжущее с температурной обработкой в процессе имеет минимальную степень фитотоксичности. Эффект торможения для образцов ЦВА выше в сравнении с показателями КВ и КВА. Степень фитотоксичности для всех рассматриваемых вяжущих снижается в ряду ЦВА > КВА > КВ. По мере увеличения разбавления (снижения концентрации экстракта) наблюдается последовательное снижение эффекта торможения развития семян тест-культуры на всех исследуемых составах (рис. 3).

При этом следует отметить, что фитотоксическое действие всех образцов, исследуемых в данной работе, отсутствует на 3-ем разбавлении (1:500), что согласно [6] свидетельствует о минимальной степени отрицательного воздействия на среду обитания и здоровье человека. Значение фитотоксичности для образцов КВ и КВА не превышает минимально действующее (пороговое) показание (фитоэффект < 20%) уже при разбавлении 1:100.

На основании используемой методики в рамках эксперимента был определен класс опас-

ности исследуемого отхода КМА, устанавливаемый по значению ER50 (среднеэффективное разведение – разведение экстракта, вызывающее эффект, равный 50%). Согласно полученным результатам фитоэффекта (рис. 3) среднеэффективное разведение ER50 для исследуемых образцов достигается на нативных экстрактах (т.е. ≤1), что позволяет отнести данные материалы к 4 классу опасности (малоопасные).

Таким образом, из полученных данных следует, что попутнодобываемые породы КУМ являются техногенным сырьем с низкой степенью фитотоксичности. Композиционные вяжущие с их применением не обладают повышенными показателями токсичности и могут быть рекомендованы для производства строительных материалов естественного и автоклавного твердения.

*Работа выполнена при финансовой поддержке в рамках гранта Президента РФ № МК-6170.2013.8

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Носова А.Н. Фомина Е.В. Термоактивация опал-кристоболитовой породы отхода коркинского угольного месторождения / Технические науки от теории к практике: сб. материалов конф. XXIV Междунар. заоч. науч.практ. Конф. (7 августа 2013 г.), Новосибирск: Изд. «СибАК», 2013. №24. С. 106–111.
- 2. Лютенко А.О., Лебедев М.С., Строкова В.В. Анализ отходов горной добычи как потенциального источника сырья для производства дорожно-строительных материалов // Вестник Волгоградского государственного архитектурно-строительного университета. Серия: Строительство и архитектура. 2013. № 31-2 (50). С. 445–449.
- 3. Кожухова Н.И., Жерновский И.В., Строкова В.В. Оценка биопозитивности геополимерных вяжущих на основе низкокальциевой золы-

- уноса // Строительные материалы. 2012. №4. С. 84–85.
- 4. Ходыкин Е.И., Фомина Е.В., Николаенко М.А., Лебедев М.С. Рациональные области использования сырья угольных разрезов // Вестник Белгородского государственного технологического университета им. В.Г. Шухова. 2009. № 3. С. 125–128.
- 5. Строкова В.В., Жерновский И.В., Лютенко А.О., Лебедев М.С. Анализ органоминеральных композитов с учетом генезиса и размерных уровней минерального сырья // Вестник Белгородского государственного технологического университета им. В.Г. Шухова. 2009. № 4. С. 28–32.
- 6. Методические рекомендации. МР 2.1.7.2297-07 «Обоснование класса опасности отходов производства и потребления по фитотоксичности».