DOI: 10.12737/article 5a001ab28c24b0.04912816

Юрьев А.Г., д-р техн. наук, проф., Толбатов А.А., канд. техн. наук, доц., Смоляго Н.А., канд. техн. наук, доц., Яковлев О.А., доц.

Белгородский государственный технологический университет им. В.Г. Шухова

РАЦИОНАЛЬНЫЕ СЕЧЕНИЯ БРУСА ПРИ КОСОМ ИЗГИБЕ*

yuriev ag@mail.ru

Косой изгиб рассматривается как одновременный изгиб бруса моментами Mz и My, для которых оси z и y являются главными центральными осями инерции сечения. Цель работы - выявление рациональных сечений для этого вида деформации при заданном дополнительном условии. Идея заключается в надлежащем «обволакивании» материей силового поля. Способ ее осуществления - рассмотрение изопериметрической задачи, в которой при варьировании параметров поперечного сечения бруса его площадь остается постоянной. Рассмотрены два типа сечения: коробчатое и в форме Z. Из условий минимума функции напряжений выведены уравнения, позволяющие определить варьируемые параметры. Форма Z оказалась намного эффективнее коробчатого профиля: экстремальные напряжения на 25 % меньше. В изопериметрической задаче подбирается материал с расчетным сопротивлением, соответствующим экстремальному напряжению.

Ключевые слова: косой изгиб, рациональное сечение бруса, экстремальные напряжения, изопериметрическая задача.

Введение. В отличие от прямого изгиба общий случай изгиба, при котором плоскость действия момента не совпадает с главной осью инерции сечения, называется косым изгибом.

Косой изгиб удобнее всего рассматривать как одновременный изгиб бруса моментами M_z и M_y , для которых оси z и y являются главными центральными осями инерции сечения, а плоскости действия xz и yz — главными плоскостями бруса [1–3].

Основная часть. Зададим момент M на торце бруса в силовой плоскости, составляющей с главной плоскостью xy угол β (рис. 1) и обозначенной следом f-f. Тогда $M_Z=M\cos\beta,\ M_y=M\sin\beta.$

Напряжение в точке (z,y) можно определить как алгебраическую сумму напряжений от M_z и M_v [4–10]:

$$\sigma_{x} = -M \left(\frac{\cos \beta}{I_{z}} y + \frac{\sin \beta}{I_{y}} z \right). \tag{1}$$

Минус введен для согласования знаков между внутренним усилием и напряжением (положительный момент вызывает в точках первого квадранта отрицательные напряжения, то есть напряжения сжатия).

Рассмотрим изопериметрическую задачу (площадь сечения A при неизменяемых размерах B и H задана), заключающуюся в определении сторон b и h внутреннего прямоугольника, которые обеспечивают при заданном расположении

силовой плоскости минимум абсолютной величины напряжений в опасных точках сечения и вместе с этим минимальный расход материала [11–13].

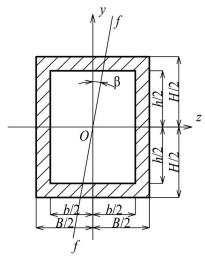


Рис. 1. Коробчатое сечение бруса со следом силовой плоскости f - f

Итак, при b = kB и h = mH, получаем дополнительное условие в виде

$$A = BH(1 - km) = c$$
 (c = const). (2)

Функция экстремальных напряжений (при z=B/2, y=H/2, z=-B/2, y=-H/2) с дополнительным условием (2) получает вид:

$$\Phi = \frac{6M}{BH} \left[\frac{\cos\beta}{H(1-km^3)} + \frac{\sin\beta}{B(1-k^3m)} \right] + \lambda [BH(1-km)], \tag{3}$$

где λ – множитель Лагранжа, имеющий постоянную величину в изопериметрический задаче.

Условия минимума функции (3):

$$\partial \Phi/\partial k = 0$$
, $\partial \Phi/\partial m = 0$, $\partial \Phi/\partial \lambda = 0$ (4)

представляются в виде следующих уравнений:

$$\frac{6M}{BH} \left[\frac{Hm^3 \cos \beta}{H^2 (1 - km^3)^2} + \frac{3Bk^2 m \sin \beta}{B^2 (1 - k^3 m)^2} \right] - BHm\lambda = 0, \quad (5)$$

$$\frac{6M}{BH} \left[\frac{3Hk^{-3} \cos \beta}{H^2 (1 - km^3)^2} + \frac{Bk^3 \sin \beta}{B^2 (1 - k^3 m)^2} \right] - BHm\lambda = 0, (6)$$

$$BH(1-km)=c. (7)$$

Из уравнений (5) и (7) находим соответственно:

$$\lambda = \frac{6M}{B^2 H^2 m} \left[\frac{H m^3 \cos \beta}{H^2 (1 - k m^3)^2} + \frac{3B k^2 m \sin}{B^2 (1 - k^3 m)^2} \right], \quad (8)$$

$$m = \frac{1}{k} \left(1 - \frac{c}{BH} \right). \tag{9}$$

Подставляя выражения λ и m в уравнение (6), получаем синтезирующее уравнение:

$$\frac{\frac{2}{k}\cos\beta(1-\frac{c}{BH})^2}{H\left[1-\frac{c}{k^2}(1-\frac{c}{BH})^3\right]^2} - \frac{2k^3\sin\beta}{B\left[1-k^2\left(1-\frac{c}{BH}\right)\right]^2} = 0. \quad (10)$$

Решение нелинейного уравнения (10) дает величину k, а, следовательно, и b. После этого из зависимости (9) находим величину m, а, следовательно, и h.

Доказательством минимума функции Ф служит положительная разность ее значений для сравниваемого варианта в надлежащей окрестности и полученного решения.

В качестве числового примера рассмотрен случай: B=10 см, H=20 см, A=122 см 2 , $\beta=30^\circ$. После подстановки этих значений в уравнение (10) и его решения получено значение k=0,6, а затем по формуле (9) находим m=0,65. Эти числа показывают, что стороны внутреннего прямоугольника b=6 см и h=13 см не составляют единой пропорции со сторонами наружного прямоугольника B=10 см и H=20 см соответственно.

Примечательно, что в случаях $\beta = 0$ и $\beta = 90^\circ$, характерных для плоского изгиба, уравнение (10) выражает ориентацию на сплошное сечение.

В конце XIX века немецкий ученый В. Роукс сформулировал закон «борьбы элементов» в организме, по которому максимум работы осуществляется минимумом материала. Постоянное функциональное раздражение вызывает усиление действующего органа путем повышения поставки вещества. Отсутствие раздражения позволяет перенести вещество в другие органы, где, напротив, налицо повышение раздражения. Этим

объясняется способность живых систем адаптироваться к длительным и многократным воздействиям внешних факторов умеренной интенсивности путем как функциональной, так и морфологической перестройки отдельных структур и систем. Таков процесс «обволакивания» материей силового поля [14].

Исследуя косой изгиб бруса, мы убеждаемся в том, что экстремальные напряжения в сечении образуются в квадрантах, в которых расположен след силовой плоскости. Следовательно, в этих квадрантах должно быть и сосредоточение материала.

Указанному требованию удовлетворяет *Z*-овый профиль (рис.2). В литературе по сопротивлению материалов эта идея не нашла отражения, а сам упомянутый профиль рассматривается как образец сложного сечения и не более того.

Рассмотрим аналогичную задачу для этого профиля. Можно варьировать четыре параметра, определяющие конфигурацию сечения, но это значительно усложнит решение задачи. Принципиально важно найти соотношение размеров b и t частей сечения, определяющих рациональное расположение материала при восприятии косого изгиба.

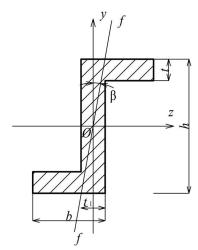


Рис. 2. Z-овое сечение бруса со следом силовой плоскости f - f

Представим геометрические характеристики сечения [15]:

$$A = ht_1 + 2t(b - t_1); (11)$$

$$I_z = \frac{1}{12} [bh^3 - (b - t_1)(h - 2t)^3];$$
 (12)

$$I_{y} = \frac{1}{12} [ht_{1}^{3} + 6tb^{2}(b - t_{1}) + 2t(b - t_{1})^{3}]. (13)$$

Дополнительное условие имеет вид:

$$A = ht_1 + 2t(b - t_1) = c$$
 (c = const). (14)

Функция экстремальных напряжений (при $z=b-\frac{t_1}{2}$, $y=\frac{h}{2}$; $z=-(b-\frac{t_1}{2})$, $y=-\frac{h}{2}$) получает вид:

$$\Phi = M \left[\frac{\cos \frac{h}{I_z} + \frac{\sin \beta}{2} \left(b - \frac{t_1}{2} \right) \right] + \lambda [ht_1 + 2t(b - t_1)]. \tag{15}$$

представляются в виде следующих уравнений:

$$\frac{-6h\cos\beta\left[h^{3}-(h-2t)^{3}\right]}{[bh^{3}-(b-t_{1})(h-2t)^{3}]^{2}}+\frac{12\sin\beta\left\{ht_{1}^{3}+6tb^{2}(b-t_{1})-2t(b-t_{1})^{3}-6t(b-\frac{t_{1}}{2})\left[b(3b-2t_{1})+(b-t_{1})^{2}\right]\right\}}{\left[ht_{1}^{3}+6tb^{2}(b-t_{1})+2t(b-t_{1})^{3}\right]^{2}}+2t\lambda=0,\tag{17}$$

$$-\frac{36h\cos\beta(b-t_1)(h-2t)^2}{[bh^3-(b-t_1)(h-2t)^3]^2} - \frac{12\sin(b-\frac{t_1}{2})\left[(6b^2(b-t_1)+2(b-t_1)^3\right]}{[ht_1^3+6tb^2(b-t_1)+2t(b-t_1)^3]^2} + 2(b-t_1)\lambda = 0,$$
(18)

$$ht_1 + 2t(b - t_1) = c.$$
 (19)

Получив λ из уравнения (17) и выражение

$$t = \frac{c - ht_1}{2(b - t_1)} \tag{20}$$

из уравнения (19) и подставив их в уравнение (18), приходим к синтезирующему уравнению с неизвестным b (из-за громоздкости не приводится).

В качестве числового примера рассмотрен случай: h = 20 см, A = 122 см², $\beta = 30^{\circ}$. После подстановки этих значений в синтезирующее уравнение и его решения получаем размер сечения b = 11,3 см, а затем по формуле (20) — t = 3,5 см.

Экстремальные напряжения, равные по модулю 0,0024M, оказались на 25 % меньше, чем в случае коробчатого сечения (0,0031М) при той же площади поперечного сечения.

Выводы. Из двух сравниваемых сечений коробчатого и Z-ового – последнее при косом изгибе оказывается значительно эффективнее при расчетах на прочность. Можно предположить, что при варьировании четырьмя параметрами сечения можно достичь еще более рационального его варианта. В изопериметрической задаче подбирается материал, расчетное сопротивление которого соответствует экстремальному напряжению.

*Работа выполнена в рамках Программы развития опорного университета на базе БГТУ им. В.Г. Шухова.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Timoshenko S. Strength of materials. Elementary theory and problems. Toronto - London -New York: D. van Nostrand Company. 1930. 380 p.

- 2. Фепль А. Техническая механика. Т. 3. Сопротивление материалов. М.: ОНТИ НКТП CCCP. 1937. 334 c.
- 3. Феодосьев В.И. Сопротивление материалов. М.: Наука. 1967. 552 с.
- 4. Александров А.В., Потапов В.Д., Державин Б.П. Сопротивление материалов. М.: Высшая школа. 1995. 360 с.
- 5. Беляев Н.М. Сопротивление материалов. М.: ГИФМЛ. 1959. 856 с.
- 6. Биргер И.А., Мавлютов Р.Р. Сопротивление материалов. М.: Наука. 1986. 560 с.
- 7. Гастев В.А. Краткий курс сопротивления материалов. М.: ГИФМЛ. 1959. 424 с.
- 8. Глушков Г.С., Синдеев В.А. Курс сопротивления материалов. М.: Высшая школа. 1965. 768 c.
- 9. Дарков А.В., Шпиро Г.С. Сопротивление материалов. М.: Высшая школа. 1969. 736 с.
- 10. Хечумов Р.А., Юрьев А.Г., Толбатов А.А. Сопротивление материалов и основы строительной механики. М.: АСВ. 1994. 387 с.
- 11. Юрьев А.Г. Вариационные постановки задач структурного синтеза // Докл. 5-го нац. конгр. по теор. и прикл. механ. (Болгария). В 2 т. Т. 1. София: Изд-во Болгар. АН. 1985. С. 318-323.
- 12. Юрьев А.Г. Вариационные принципы строительной механики Белгород. БелГТАСМ, 2002. 90 с.
- 13. Юрьев А.Г. Оптимизация ферм на основе критерия энергетического Вестник БелГТАСМ. 2002. №2. С. 59-61.
- 14. Roux W. Gesammelte Abhandlungen über Entwicklungsmechanik der Organismen. Bd 1-2. Leipzig, 1895. 1112 s.
- 15. Писаренко Г.С., Яковлев А.П., Матвеев В.В. Справочник по сопротивлению материалов. Киев: Наукова думка, 1988. 736 с.

Информация об авторах

Юрьев Александр Гаврилович, доктор технических наук, профессор кафедры теоретической механики и сопротивления материалов.

E-mail: yuriev ag@mail.ru.

Белгородский государственный технологический университет им. В.Г. Шухова.

Россия, 308012, Белгород, ул. Костюкова, д. 46.

Толбатов Анатолий Александрович, кандидат технических наук, доцент кафедры теоретической механики и сопротивления материалов.

E-mail: anatolij.tolbatov@mail.ru.

Белгородский государственный технологический университет им. В.Г. Шухова.

Россия, 308012, Белгород, ул. Костюкова, д. 46.

Смоляго Нина Алексеевна, кандидат технических наук, доцент кафедры теоретической механики и сопротивления материалов.

E-mail: NASmolyago@mail.ru.

Белгородский государственный технологический университет им. В.Г. Шухова.

Россия, 308012, Белгород, ул. Костюкова, д. 46.

Яковлев Олег Александрович, доцент кафедры теоретической механики и сопротивления материалов.

E-mail: yak-oleg@yandex.ru.

Белгородский государственный технологический университет им. В.Г. Шухова.

Россия, 308012, Белгород, ул. Костюкова, д. 46.

Поступила в сентябре 2017 г.

© Юрьев А.Г., Толбатов А.А., Смоляго Н.А., Яковлев О.А., 2017

Yuriev A.G., Tolbatov A.A., Smolyago N.A., Yakovlev O.A. RATIONAL SECTIONS OF THE BEAM AT THE SKEW BENDING

The skew bending is considered as a simultaneous bending of a beam by the moments of M_z and M_y for which axes z and y are the main axes of gravity of inertia of section. The work purpose – identification of rational sections for this type of deformation at the given side condition. The idea consists in suitable «conformal coating» by matter of a field of force. A way of its exercise - consideration of an isoperimetric task in which at variation of parameters of a transverse section of a beam its area remains to a constant. Two types of section are considered: box-shaped and in a form Z. The equations allowing to determine the varied parameters are brought out of conditions of a minimum of a stress function. The form Z was much more effective than a channel section: extremal stresses are 25 % less. In an isoperimetric task material with the calculated resistance corresponding to extreme tension is selected.

Keywords: skew bending, rational section of a beam, extremal stress, isoperimetric task.

Information about the authors

Yuriev Alexander Gavrilovich, Ph.D., Professor.

E-mail: yuriev_ag@mail.ru

Belgorod State Technological University named after V.G. Shukhov.

Russia, 308012, Belgorod, st. Kostyukova, 46.

Tolbatov Anatoly Aleksandrovich, Ph.D., Assistant professor.

E-mail: anatolij.tolbatov @mail.ru

Belgorod State Technological University named after V.G. Shukhov.

Russia, 308012, Belgorod, st. Kostyukova, 46.

Smolyago Nina Alekseevna, Ph.D., Assistant professor.

E-mail: NASmolyago@mail.ru.

Belgorod State Technological University named after V.G. Shukhov.

Russia, 308012, Belgorod, st. Kostyukova, 46.

Yakovlev Oleg Aleksandrovich, Assistant professor.

E-mail: yak-oleg@yandex.ru

Belgorod State Technological University named after V.G. Shukhov.

Russia, 308012, Belgorod, st. Kostyukova, 46.

Received in September 2017

© Yuriev A.G., Tolbatov A.A., Smolyago N.A., Yakovlev O.A., 2017