Маслова И.В., канд. техн. наук, доц., Четвериков Б.С., н.с. Белгородский государственный технологический университет им. В.Г. Шухова

ОПРЕДЕЛЕНИЕ ИСКАЖЕНИЙ ФОРМЫ КРУПНОГАБАРИТНЫХ ДЕТАЛЕЙ ПО АНАЛИЗУ ПРОЕКЦИИ ПРАВИЛЬНОЙ ГЕОМЕТРИЧЕСКОЙ ФИГУРЫ НА КРИВОЛИНЕЙНУЮ ПОВЕРХНОСТЬ

iren_mas@list.ru

В статье рассмотрены вопросы, возникающие в процессе осуществления дистанционного контроля геометрических характеристик крупногабаритных деталей узлов и агрегатов, а также определения расстояния до них. Приводится обоснование выбора бесконтактного метода контроля формы криволинейной поверхности, основанного на анализе фигуры, проецируемой фотоматрицей на контролируемый объект, а также анализируются преимущества и недостатки современных контрольно-измерительных средств, применяющихся в производстве. Проведено исследование возможных вариантов спроецированной фигуры при определении отклонений формы изделия, а также габаритов и расстояния до него. Таким образом, установлено, что предложенный метод бесконтактного контроля обеспечивает наиболее адекватное изображение линий фигуры, а использование в качестве дифракционной решетки – голографической насадки, формирующей прямоугольник с опорными точками, позволяет достигнуть необходимой точности определения отклонения формы детали.

Ключевые слова: техническое зрение, проекция, бесконтактный контроль, погрешность формы.

Введение. Одной из актуальных задач как современного приборостроения, так и машиностроения, является определение геометрических и точностных характеристик крупногабаритных изделий в процессе их эксплуатации. Очевидно, что контактно - щуповые методы и средства контроля постепенно вытесняются с рынка контрольного оборудования более прогрессивными, в основе которых лежат принципы и методы, применяемые в машинном (техническом) зрении[1, 2]. При условии адекватной их реализации, а также с учетом возникающих при этом вопросов базирования обрабатываемого изделия и контрольного устройства, точность бесконтактных средств контроля ограничивается лишь пределами разрешающей способности существующих на данный момент оптических приёмников и достигает 0,1 мкм [3], что говорит о перспективах их применения для контроля различных изделий, в том числе прецизионных [4].

Основная часть. Постоянное развитие технологий в области технического зрения требует новых научных подходов к реализации подобных измерительных средств, основанных, например, на проекционном контроле [5]. Такие факторы, влияющие на проекционный контроль, как точность и адекватность отображения проекции, являются одними из наиболее значимыми и требуют более подробного рассмотрения и изучения. В свою очередь, на формирование световой сетки при считывании изображения с поверхности детали влияет также расстояние

проецирования, угол проецирования, мощность источника проецирования, освещенность и запыленность помещения, где производятся измерения.

Наиболее подходящими приборами, способными с разной степенью результативности решить описанную выше задачу, являются лазерные сканеры, трекеры, дальномеры.

Лазерные сканеры измеряют расстояние до объекта и два угла. Пучок лазера исходит из излучателя, расположенного в измерительной головке сканера, отражается от поверхности объекта и возвращается в приемник. Недостатками лазерных сканеров являются [6]: низкая степень автоматизации при трехмерном моделировании объектов сложной формы на основе лазерного сканирования; невозможность определения формы объектов в динамике, связанная со скоростью сканирования и временем обработки сигнала.

Лазерные трекеры по принципу работы схожи с лазерными сканерами, и так же измеряют два угла и расстояние. Главный их недостаток заключается в том, что большинство систем рассчитано на работу в помещениях, такие системы имеют вентиляционные отверстия на головке датчика или контроллере. Радиус действия некоторых трекеров составляет 15 м, что ограничивает размер измеряемого объекта [6].

Поставленную задачу определения расстояния до объекта можно выполнить и при помощи лазерных дальномеров, основным недостатком которых является то, что технические возможности их в условиях высокой освещенности помещения или на открытом пространстве снижаются. Кроме того, дальность измерений определяется поглощающей способностью поверхности объекта, расстояние до которого измеряется.

Авторами данной работы в [7, 8] рассмотрены различные вопросы, связанные с контролем геометрии и размеров крупногабаритных объектов. В частности, предлагается определять погрешности формы объекта посредством использования способа проецирования фигуры на поверхность детали через голографическую насадку (рис. 1) и реализованных на его основе специальных средств измерений.

Рис. 1. Упрощенная схема проецирования фигуры через дифракционную решетку

Лазерный излучатель 1 с установленной на нём дифракционной решеткой 2 формирует проекцию отраженной фигуры на измеряемую поверхность3. Затем установленный и специальным образом базированный оптический приёмник (на рисунке не показан) «захватывает» изображение отраженной проекции и передаёт её для последующего анализа в элементы контрольного устройства.

Отдельного рассмотрения требует вопрос, связанный с анализом спроецированной на объект фигуры, идеальной формой которой является прямоугольник. В частности, исследуем наиболее вероятные варианты спроецированных фигур для определения погрешности формы объекта, а также расстояния до него. Проведем анализ фигур, спроецированных на 3D-модель крупногабаритного объекта. Так как дифракционная решетка голографической насадки позволяет спроецировать на поверхность прямоугольник, состоящий из точек и линий, а также исходя из известных основных погрешностей формы крупногабаритных цилиндрических деталей технологических агрегатов, которыми являются овальность, бочкообразность и конусность, варианты искажений фигуры на поверхность цилиндрического объекта могут быть следующими (табл. 1и рис. 2).

Рис. 2. Общий случай искажения фигуры, получающейся при проецировании на криволинейную поверхность

Каждому варианту погрешности формы детали соответствует свой вид искаженной фигуры с определенными её размерами и постоянной привязкой к базе измерений.

Эти зависимости систематизированы и реализованы в алгоритмах контроля и работы контрольного оборудования, более подробно рассмотренных авторами в [7]. При этом, одним из необходимых условий проецирования является неразрывность контура и постоянная толщина линий фигуры, спроецированной на объект.

Таблица 1

0		U	~ I		1
Соответствие	пязменов искя	аженной прое	чипуемои d	нигупы и вилом	отклонения формы
Coorderendine	размеров нека	incinion npoc	дпрустоп ч	рптуры п впдом	or working working

Вид отклонения цилиндрической детали	Геометрические пара- метры фигуры
Модель не имеет отклонений формы	$b_o = const$ $h_1 = h_2$
Овальность (отклонение от круглости в поперечном сечении)	$b_o < b_1 \\ h_1 = h_2$
Вогнутость поверхности (бочкоообразность)	$\begin{array}{c} h_1 = h_2 \\ h_0 > h_1 \end{array}$
Выпуклость поверхности (бочкообразность)	$\begin{array}{c} h_1 = h_2 \\ h_0 < h_1 \end{array}$
Криволинейная поверхность	$\begin{array}{c} h_0 < h_1 < h_2 \\ b_o < b_1 \end{array}$

Специальный программный модуль обрабатывает считанное изображение, при этом вычисляет количество пикселей в образующих линиях проекции и выбирает линию, где значение концентрации пикселей максимально. Толщина линии вычисляется по формуле [9]:

$$b = \Delta p \cdot n_p, \tag{1}$$

где b – толщина линии, мм; Δp – размер пикселя, мм (зависит от разрешающей способности фото матрицы чем выше разрешающая способность матрицы, тем больше толщина линии в пикселях); n_p – количество пикселей.

Для установления наиболее вероятного варианта фигуры при контроле погрешности формы были выполнены пошаговые измерения с использованием компьютерной модели бандажа, имеющего различные отклонения формы. Результаты измерений сведены в табл. 2. При повороте модели детали на 360° с шагом в 10° выявлено изменение геометрических зависимостей между линиями контура фигуры в различных сечениях цилиндрической модели для каждого шага измерений.

Таблица 2

N⁰	Размеры проекции, мм			N⁰	Размеры проекции, мм				
ИЗМ.	b_{I}	b	h, h_1	b_0	ИЗМ.	b_1	b	h, h ₁	b_0
1	354,7364	354,7364	354,7364	354,608	19	354,7364	354,7364	354,7364	354,608
2	354,78	354,9508	354,8658	354,663	20	354,78	354,9508	354,8658	354,663
3	355,0762	355,3973	355,2379	354,8236	21	355,0762	355,3973	355,2379	354,8236
4	355,5884	356,0212	355,807	355,0753	22	355,5884	356,0212	355,807	355,0753
5	356,2541	356,7467	356,5032	355,3935	23	356,2541	356,7467	356,5032	355,3935
6	356,9926	357,4855	357,2412	355,7434	24	356,9926	357,4855	357,2412	355,7434
7	357,7149	358,1487	357,934	356,0826	25	357,7149	358,1487	357,934	356,0826
8	358,3345	358,6565	358,4967	356,3665	26	358,3345	358,6565	358,4967	356,3665
9	358,7772	358,9487	358,8633	356,5555	27	358,7772	358,9487	358,8633	356,5555
10	358,9905	358,9905	358,9905	356,6218	28	358,9905	358,9905	358,9905	356,6218
11	358,9487	358,7772	358,8633	356,5555	29	358,9487	358,7772	358,8633	356,5555
12	358,6565	358,3345	358,4967	356,3665	30	358,6565	358,3345	358,4967	356,3665
13	358,1487	357,7149	357,934	356,0826	31	358,1487	357,7149	357,934	356,0826
14	357,4855	356,9926	357,2412	355,7434	32	357,4855	356,9926	357,2412	355,7434
15	356,7467	356,2541	356,5032	355,3935	33	356,7467	356,2541	356,5032	355,3935
16	356,0212	355,5884	355,807	355,0753	34	356,0212	355,5884	355,807	355,0753
17	355,3973	355,0762	355,2379	354,8236	35	355,3973	355,0762	355,2379	354,8236
18	354,9508	354,78	354,8658	354,663	36	354,9508	354,78	354,8658	354,663

n					1
Результяты	измерении	молепи	имеющеи	отклонения	формы
I CSYSIDIAI DI	nomepennin	модели	писющен	01 Kiloneninini	Ψυμπρι

Сопоставив данные табл. 1 и 2 с показанными на рисунке 2 геометрическими взаимосвязями элементов фигуры, можно сделать вывод о том, что наиболее вероятной погрешностью модели цилиндрической детали, является отклонение в виде овальности. Проецируемая фигура это фигура, у которой длина верхней b_1 и нижней b_2 границ проекции меньше размера осевого центрального отрезка b_0 .

Проведем несколько измерений расстояния до объекта, каждый раз заново настраивая контрольный прибор, но не меняя его положения, и сравнивая результаты с данными, измеренными лазерным дальномером, с целью выявления наиболее вероятного, а также среднего значения расстояния до объекта и расхождения между теоретическими и практическими результатами. В целом, анализ проекции для определения расстояния аналогичен анализу при контроле отклонения формы и сводится к определению расстояний между опорными точками контура спроецированной фигуры с условием обязательной привязки к измерительной базе [10, 11].

Для определения расстояния до объекта составим расчетную схему, изображенную на рис. 3.

Возможны два способа определения расстояния L до объекта: по высоте формируемого прямоугольника h - (2) или по его ширине b - (3):

$$L = h/2tg(\alpha/2) \tag{2}$$

$$L = b/2tg(\beta/2) \tag{3}$$

где α – угол светового луча по высоте, ^{*o*}; β – угол светового луча по ширине, ^{*o*}.

Известно также [12], что:

$$h = \frac{25.4}{d_n} \cdot h'; MM, \qquad (4)$$

где d_n – разрешение картинки, пиксель х дюйм (*DPI*).

Сопоставив выражения (2), (3) и (4), можно сделать вывод о том, что погрешность измерения расстояния зависит от соотношения размера изображения и расстояния, на котором установлено измерительное устройство, а также разрешения и физических размеров видеоматрицы. Очевидно, что точность измерения не может превысить величины одного пикселя. То есть, например, даже при разрешении матрицы 1200 *DPI* точность измерения составляет 0,021 мм. При механической обработке крупногабаритных деталей допускается погрешность до 3 мм [13], что говорит о том, что необходимая точность измерений обеспечивается.

Теоретические данные, а также результаты измерений, сведем для сравнения в табл. 3.

Рис. 3. Схема определения расстояния до объекта:

1 – объект, до которого определяется расстояние; 2 – лазерный излучатель; 3 – видеоустройство, содержащее оптический приёмник 5 и фотоматрицу 4, которая «захватывает» проекцию фигуры 6

Таблица 3

Сравнение параметров контроля в процессе определения расстояния до объекта

Высота № проекции изм фигуры <i>h</i> ,		Ширина проекции фигуры <i>b</i> ,	Углы проец-я, °		Расчетные расст-я до объекта, мм		Измеренное предлож. устрой-	Измер. дально- ме- ром <i>L_{дал}</i> ,	Расхождение значений, (<i>L</i> _{изм} - <i>L</i> _{дал})
	MM	MM	α	β	L_h	L_b	$\operatorname{cTBOM}L_{u_{3M}}, \operatorname{MM}$	MM	
1	349,10	104,50	10	3	1995,12	1995,35	1995,23	1997,50	2,27
2	350,00	104,30	10	3	2000,26	1991,53	1995,89	1996,00	0,11
3	349,60	105,00	10	3	1997,97	2004,89	2001,43	2001,00	-0,43
4	349,50	104,50	10	3	1997,40	1995,35	1996,37	2000,00	3,63
5	350,10	104,69	10	3	2000,83	1998,97	1999,90	2000,00	0,10
6	350,00	104,54	10	3	2000,26	1996,11	1998,18	1999,50	1,32
7	349,70	104,57	10	3	1998,54	1996,68	1997,61	1998,50	0,89
8	349,50	104,59	10	3	1997,40	1997,07	1997,23	1999,00	1,77
9	349,29	104,65	10	3	1996,20	1998,21	1997,21	1998,00	0,79
10	349,10	104,50	10	3	1995,12	1995,35	1995,23	1997,50	2,27

Наиболее вероятным значением расстояния является 1997 мм измеренным предложенным устройством и 1999 мм, измеренным лазерным

дальномером. При этом разница в расчетных и измеренных расстояниях составляет не более 2 %, что является адекватным значением при реализации контрольно-измерительных средств [12].

Из таблицы 3 следует, что расхождение между измеренными и теоретическими значениями составляет не более 3мм, что в условиях машиностроительной отрасли является допустимым.

Выводы. Установлено, что:

 проецирование прямоугольной фигуры на криволинейную поверхность позволяет оценить искажение формы крупногабаритных деталей;

2) анализ размеров изображения спроецированной фигуры обеспечивает определение расстояния до объекта при наличии данных об основных геометрических характеристиках видеоматрицы с погрешностью, не превышающей 2%.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Чепчуров М.С., Жуков Е.М., Блудов А.Н. Способы проекционной оценки геометрии объектов в машиностроении и их реализация. Белгород: Изд. БГТУ им. В.Г. Шухова, 2015. 150 с. ISBN: 978-5-361-00335-8

2. Hilfiker J.N., Synowiky R.A. Spectroscopic ellipsometry for process applications // Ibid. 1996. №. 10. Pp. 218–226.

3. Чепчуров М.С., Жуков Е.М., Блудов А.Н. Устройство оперативной бесконтактной диагностики отклонения профиля колеса железнодорожного // Механики XXI веку. 2014. № 13. С. 139–144.

4. Погонин А.А., Чепчуров М.С., Старостин С.В. Снятие характеристик процесса механической обработки крупногабаритных деталей // Тяжелое машиностроение. 2005. № 3. С. 15– 16.

5. Четвериков Б.С., Табекина Н.А. Метод оценки отклонения от круглости канавки катания лапы шарошечного долота // Вестник Сибирской государственной автомобильнодорожной академии. 2015. № 3. С. 25–31.

6. Четвериков Б.С. Применение методов бесконтактного контроля при определении геометрических характеристик изделия / Молодежь и научно-технический прогресс: сб. материалов междунар. науч.-практ. конф. студентов, аспирантов и молодых ученых // Губкинский филиал Белгор. гос. технол. ун-та. (Губкин 16 апр. 2015 г.), Губкин: Изд-во БГТУ, 2010. С. 165–168.

7. Маслова И.В., Лозовая С.Ю., Чепчуров М.С. Дистанционная диагностика состояния опорных деталей сушильных барабанов // Вестник Тамбовского государственного технического университета. 2013. Т. 19. № 3. С. 653–658.

8. Chetverikov B.S., Chepchurov M.S., Pogonin D.A. Definition of shape and position of complex geometric surfaces // World Applied Sciences Journal. 2014. Vol. 31. № 4. P. 526–530.

9. Чепчуров М.С., Блудов А.Н. Восстановление поверхностей катания железнодорожного оборудования с использованием адаптивного управления // Ремонт. Восстановление. Модернизация. 2012. № 8. С. 24–26.

10.Pershin N.S., Chepchurov M.S., Duganov V. Ya. Definition of non-stationary rotating objects axis // World Applied Sciences Journal. 2014. Vol. 30. № 9. P. 1199–1204.

11.Webster J.G. The measurement instrumentation and sensors. Handbook. Heidelberg: IEEE Press, 1999. 1640 p.

12. Чепчуров М.С. Контроль и регистрация основных параметров резания при обработке крупногабаритных деталей // Технология машиностроения. 2008. №3. С. 11–12.

13.Чепчуров М.С. Использование АЦП для регистрации и обработки аналогового сигнала в ПК // Ремонт. Восстановление. Модернизация. 2008. № 6. С. 31–34.

14.Dorsch R., Hausler G., Herrmann J. Laser triangulation: Fundamental uncertainty in distance measurement // Appl. Opt. 1994. №. 33. Pp. 85–90.

Maslova I.V., Chetvericov B.S. THE DEFINITION OF DISTORTION OF LARGE PARTS OF THE ANALYSIS OF THE PROJECTION OF THE CORRECT GEOMETRIC SHAPES ON A CURVED SURFACE

The article considers the issues arising in the process of implementing remote control of geometrical characteristics of large parts and assemblies, as well as determining the distance to them. Provides a rationale for the choice of a non-contact method of controlling the shape of the curved surface, based on the analysis of the figures, the projected fotometrica to the controlled object, and analyses the advantages and disadvantages of modern control and measuring tools used in manufacturing. A study of the possible variants of the projected figures in the determination of deviations of the product shape and dimensions and distance. Thus, it is established that the proposed method of contactless control provides the most adequate image of lines shapes, and use as a diffraction grating – holographic nozzle that generates a rectangle with control points, allows to achieve the required accuracy of determining the deviation of the part shape. **Key-words**: technical vision, projection, touchless control, form error. **Маслова Ирина Викторовна**, кандидат технических наук, доцент. Белгородский государственный технологический университет им. В.Г. Шухова. Адрес: Россия, 308012, г. Белгород, ул. Костюкова, 46. E-mail: iren_mas@list.ru

Четвериков Борис Сергеевич, научный сотрудник.

Белгородский государственный технологический университет им. В.Г. Шухова. Адрес: Россия, 308012, г. Белгород, ул. Костюкова, 46. E-mail: await_rescue@mail.ru