DOI: 10.12737/article 5940f019f3c7e4.41915523

Остановский А.А., канд. техн. наук, доц., Осипенко Л.А., канд. техн. наук, доц. Институт сферы обслуживания и предпринимательства (филиал) Донского государственного технического университета Чирской А.С., канд. техн. наук, доц., Мартыненко И.А., канд. техн. наук, доц. Шахтинский институт (филиал) Южно-Российского государственного политехнического университета (НПИ) им. М. И. Платова

АНАЛИЗ ВЛИЯНИЯ КИНЕМАТИЧЕСКОГО НЕСООТВЕТСТВИЯ ВЕТВЕЙ ЗАМКНУТОГО КОНТУРА НА ГРАНУЛОМЕТРИЧЕСКИЙ СОСТАВ ГОТОВОГО ПРОДУКТА В МЕЛЬНИЦАХ ДИНАМИЧЕСКОГО САМОИЗМЕЛЬЧЕНИЯ СИСТЕМЫ «МКАД»

ostanovskiy51@mail.ru

Приводятся результаты экспериментальных исследований зависимости гранулометрического состава мергеля от кинематического несоответствия ветвей замкнутого контура в вертикальной мельнице динамического самоизмельчения системы «МКАД». Представлены графические зависимости этого процесса, даётся описание особенностей физической картины протекающего процесса

Ключевые слова: мельница, энергоэффективность, гранулометрический состав, фракция, кинематическое несоответствие, ротор, барабан, столб материала, циркулирующая мощность

Гранулометрический состав – важный показатель физических свойств и структуры материала. Кроме того состав готового продукта при измельчении отражает вероятностный процесс образования кусков (зёрен) различной крупности в результате их разрушения [1, 2].

Для получения готового продукта необходимого гранулометрического состава, который в дальнейшем используют для получения готового продукта, на обогатительных фабриках применяют широкий спектр различных измельчительных операций и операций по грохочению. Для этого используется разнообразное оборудование, удовлетворяющего технологическому процессу, для которого установлены основные закономерности формирования гранулометрического состава конечного продукта в зависимости от технологии, конструктивных и режимных параметров используемого для этого оборудования [3, 4].

В то же время для нового класса машин, к которому относятся вертикальные мельницы динамического самоизмельчения с замкнутым контуром системы «МКАД», такие закономерности не разработаны по причине короткого срока их создания, сдерживает их внедрение в различных отраслях народного хозяйства РФ и странах СНГ.

Так как процесс взаимодействия разрушаемых кусков и частиц в мельницах этой системы носит случайный характер, то на первоначальном этапе исследования получение экспериментальных данных о характере формирования гранулометрического состава продуктов помола

минерального сырья в зависимости от режимных и конструктивных параметров мельниц системы «МКАД» является актуальной задачей.

На рис. 1 представлена конструктивная схема вертикальной мельницы динамического самоизмельчения системы «МКАД», показывающая принцип её работы.

Характерной особенностью мельниц этой системы является то, что в них для разрушения кусков и частиц используется не только кинетическая энергия вращающегося ротора, но итак называемая «циркулирующая» энергия замкнутого контура [5-10].

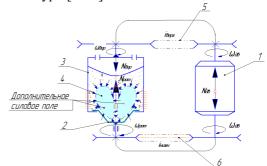


Рис. 1. Конструктивная схема вертикальной мельницы динамического самоизмельчения системы «МКАД»:

- 1 приводной двигатель; 2 ротор; 3 барабан; 4 активная зона измельчения;
- 5, 6 верхняя и нижняя ветвь замкнутого контура

Это достигается тем, что за счёт одновременного вращения в одном направлении, но с разными угловыми скоростями ротора 2 и барабана 4 (кинематическом несоответствии верхней 5 и нижней 6 ветви замкнутого контура замкну-

того контура), осуществляется передача крутящего момента и мощности от приводного двигателя I к столбу измельчаемого материала производится по двум параллельным направлениям.

За счёт этого происходит вовлечение в движение частиц и кусков верхней части столба, которое отсутствует в мельницах системы «МАЯ» [11–13]. Это способствует тому, за счет сил трения, возникающих при соприкосновении кусков материала с внутренней поверхностью вращающегося барабана 4, приводится во вращение верхняя часть столба измельчаемого материала, находящегося в барабане. Куски и частицы, находящиеся в верхней части столба материала, двигаясь к центру от внутренней поверхности барабана за счёт центробежных сил, приобретут дополнительную линейную скорость, что приведёт к росту их кинетической энергии. Рост скорости и кинетической энергии приведут к более интенсивному их перемешиванию и дополнительному силовому взаимодействию при их соприкосновении друг с другом. В результате этого происходит вовлечение в движение и взаимодействие большего объема частиц материала, исчезновению называемых «застойных» зон и их активное взаимодействие между собой. Так как скорость этих слоев в мельнице данной конструкции обеспечивается кинематическим несоответствием ветвей замкнутого контура, то интенсивность взаимодействия кусков и частиц, испытывающих дополнительное силовое воздействие, будет определять выходные параметры вертикальной мельницы динамического самоизмельчения производительность, гранулометрический состав и энергозатраты. Вместе с этим вовлечение в движение дополнительного объёма частиц верхней части столба будет сопровождаться нарастающим доминированием процесса истирания, что ведёт к изменению гранулометрического состава готового продукта. Таким образом, величина кинематического несоответствия ветвей замкнутого контура позволит регулировать не только производительность, но и гранулометрический состав готового продукта

В таблице Іпредставленырезультаты, полученные при проведении экспериментальных исследований гранулометрического состава измельченного мергеля в мельнице системы «МКАД» со средним размером исходных кусков d_{cp} =40 мм [14] и графики зависимости влияния кинематического несоответствия $I_{\kappa H}$ и высоты столба материала H_{cn} на гранулометрический состав измельчения мергеля при диаметре выпускных отверстий в барабане $d_{вып}$ =5,0 мм (рис. 2–7).

Графики зависимостей построены с помощью программы Advanced Grapher, которая позволяет по шести точкам эксперимента провести кривые, которые с минимальной погрешностью описывают образовавшийся гранулометрический состав в зависимости от величины кинематического несоответствия ветвей замкнутого контура мельницы системы «МКАД».

Для мельницы системы «МКАД» гранулометрический состав измельченного мергеля при заданном диаметре выпускных отверстий в барабане будет зависеть от двух факторов: высоты слоя материала над ротором H_{cn} и величины кинематического несоответствия ветвей замкнутого контура I_{kh} . Высота слоя материала, определяющая давление на ротор, и кинематическое несоответствия ветвей замкнутого контура, влияющее на силовые и энергетические показатели процесса измельчения, будут обеспечивать протекание процесса самоизмельчения для мельницы рассматриваемой системы.

Анализ влияние кинематического несоответствия ветвей замкнутого контура и высоты слоя материала в барабане на изменение гранулометрического состава фракции 5,0÷3,0 мм (рис. 2) показывает, что при высотах слоя 260, 380 и 500 мм с увеличением значения кинематического несоответствия наблюдается незначительный её прирост на 10÷15 %. При этом частицы, разрушенные и уменьшенные до размера этой фракции, мгновенно вытесняются через выпускные отверстия в барабане за его внешние границы. Другая часть объёма находящихся в барабане частиц опускается вниз под действием их сил тяжести на ротор и под воздействием ребер вращающегося ротора совершают повторные движения по тороидальной траектории, взаимодействуя со встречающимися на пути их движения и постоянно уменьшаясь в размере в основном за счёт удара и раскалывания на более меньшие размеры.

Для фракции 3,0÷1,2 мм характерно более резкое увеличение её содержание в общем объеме (рис. 3) при увеличении кинематического несоответствия Ікн. Это можно объяснить тем, что, несмотря на выпуск незначительного числа частиц уменьшенных в размере частицы размерами менее диаметра выпускных отверстий5,0÷ 3,0 мм в то же время их количество возросло при их раскалывании в первоначальный момент времени. Это приводит к тому, что их общая площадь возрастает. Следовательно, количество ударов и число соприкосновений их между собой также вырастет. В результате этого процесс будет протекать с нарастающей интенсивностью, приводящий к нарастанию по определённой зависимости содержания в готовом продукте помола фракции более мелкой фракции с размерами частиц 3,0÷1,2 мм.

Таблица 1

	I к.н. Нсл, G _{вых} , Гранулометрический сос							ав готового продукта		
II /I	T T		MM	кг/мин	По фракциям Ду, %					
№п/п	прот прот				5,0-3,0мм	3,0-1,2мм	1,2-0,63мм	0,63-0,27мм	0-0,27мм	
		0.22	260	4.27	0,91	0,88	0,28	0,79	1,21	
1.1		0,22	260	4.27	11,7	12,8	6,8	25,4	43,3	
1.2	4,	0,22	380	5,44	<u>0,88</u>	<u>1,09</u>	<u>0,384</u>	<u>1,17</u>	<u>1,90</u>	
	768-196,4				12,2	12,4	6,2	22,1	47,1	
		0,22	500	4,62	<u>1,18</u>	<u>0,786</u>	<u>0,265</u>	<u>0,862</u>	<u>1,40</u>	
					6,4	11,7	6,3	30,4	45,2	
		0,29	260	3,35	<u>0,587</u>	0,845	<u>0,217</u>	0,853	1,24	
1.1	691,2-196,4				17,1	14,3	5,8	22,8	40,1	
		0,29	380	4,25	0,77 12,9	0,833 11,3	<u>0,255</u>	$\frac{0,93}{25,9}$	1,47	
							5,0		44,5	
1.3	91,2	0,29	500	3,687	<u>0,70</u>	<u>0,71</u>	0,217	<u>0,87</u>	1,19	
	59			,	19,0	19,3 0,702	5,9	23,3	44,3 0,96	
1.1	614,4-196,4	0,32	260	3,65	<u>0,663</u> 17,2	$\frac{0.702}{21.5}$	0,205 6,8	<u>0,722</u> 23,9	$\frac{0.96}{30.5}$	
		0,32	380	3,91	0,82	0,69	0,8	0,83	1,11	
					11,7	17,4	4,4	$\frac{0,83}{22,7}$	43,8	
1.3					0,84	0,69	0,187	0,768	1,12	
1.3	14,	0,32	500	3,59	0,84 11,4	16,5	5,1	19,1	$\frac{1,12}{47,9}$	
1.1	9	0,38	260	3,12	0,71	0,67	0,24	0,78	1,23	
					$\frac{0.71}{17.3}$	$\frac{0.07}{18.0}$	$\frac{6,21}{6,3}$	$\frac{6,76}{21,6}$	33,9	
1.2					<u>0,715</u>	0,77	<u>0,312</u>	<u>1,01</u>	<u>1,73</u>	
	2,4	0,38	380	4,53	15,8	18, 4	6,9	22,1	38,3	
1.3	768-292,4	0,38		• 01	0,87	0,808	<u>0,21</u>	<u>0,86</u>	<u>1,06</u>	
		-)	500	3,81	14,8	15,2	6,2	23,4	40,4	
		0,42	260	3,98	0,607	0,622	0,184	0,57	0,737	
1.1	2,4	0,42	200	3,70	13,7	19,4	6,6	22,8	37,5	
		0,42	380	4,26	<u>0,58</u>	0,835	<u>0,251</u>	<u>0,822</u>	<u>1,77</u>	
	-29	0,42	300	4,20	14,8	19,1	5,9	23,6	41,6	
1.3	591,2-292,4	0,42	500	4,84	<u>0,813</u>	<u>0,914</u>	<u>0,266</u>	<u>0,95</u>	<u>1,90</u>	
	69	U,74	300	7,07	11,5	19,7	6,8	22,8	31,1	
		0.48	0,48 260	2,11	0,64	0,586	<u>0,164</u>	0,635	0,67	
1.1	_		ļ		21,8	21,8	5,8	20,7	29,8	
1.2	2,4	0,48	380	3,07	0,703	<u>0,721</u>	<u>0,175</u>	0,682	<u>0,79</u>	
	1-25			2,07	18,2	19,6	5,1	20,4	35,7	
1.3	614,4-292,4	0,48	500	2,66	<u>0,734</u>	0,55	0,128	0,572	0,68	
	61		500	2,00	21,2	22,1	5,2	21,6	29,9	

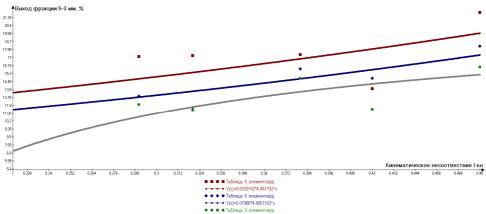


Рис. 2. Зависимость выхода фракции $5.0 \div 3.0$ мм мергеля с исходными кусками d_{cp} =40 мм от величины кинематического несоответствия ветвей замкнутого контура и высоты слоя материала в барабане; диаметр выпускных отверстий в барабане $d_{вып}$ =5.0 мм: красная линия $-H_{cn}$ =260 мм; синяя линия H_{cn} -380мм; серая линия H_{cn} =500 мм

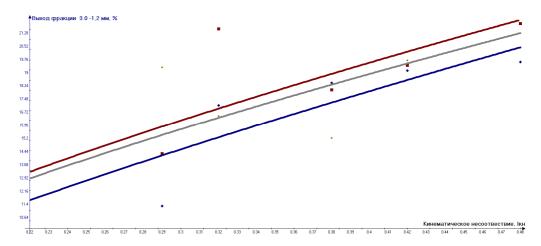


Рис. 3. Зависимость выхода фракции $3.0\div1.2$ мм мергеля со средним размером исходных кусков d_{cp} =40 мм от величины кинематического несоответствия ветвей замкнутого контура и высоты слоя материала в барабане; диаметр выпускных отверстий в барабане $d_{вып}$ =5,0 мм красная линия $-H_{cn}$ =260 мм; синяя линия $-H_{cn}$ =380 мм; серая линия $-H_{cn}$ =500 мм

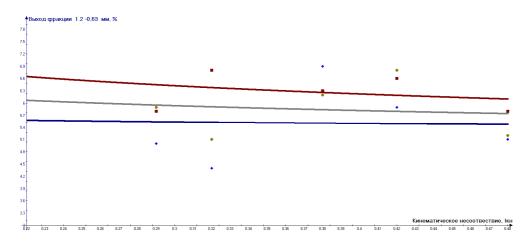


Рис. 4. Зависимость выхода фракции 1,2 \div 0,63 мм мергеля со средним размером исходных кусков d_{cp} =40 мм от величины кинематического несоответствия ветвей замкнутого контура и высоты слоя материала в барабане; диаметр выпускных отверстий в барабане $d_{вып}$ =5,0 мм красная линия $-H_{cn}$ =260 мм; синяя линия $-H_{cn}$ =380мм; серая линия H_{cn} =500 мм

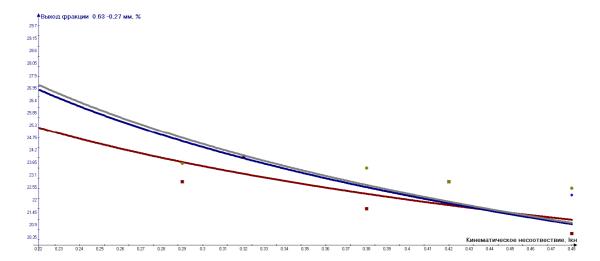


Рис. 5. Зависимость выхода фракции $1,2\div0,63$ мм мергеля со средним размером исходных кусков $d_{cp}=40$ мм от величины кинематического несоответствия ветвей замкнутого контура и высоты слоя материала в барабане; диаметр выпускных отверстий в барабане $d_{вып}=5,0$ мм красная линия — $H_{cn}=260$ мм; синяя линия — $H_{cn}=380$ мм; серая линия — $H_{cn}=500$ мм

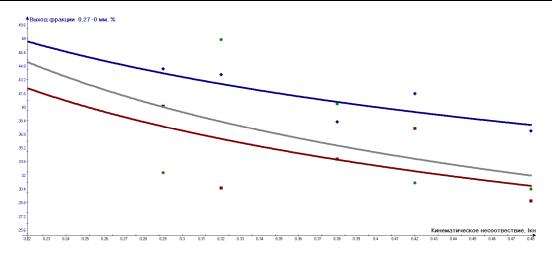


Рис. 6. Зависимость выхода фракции $0.27 \div 0$ мм от величины кинематического несоответствия ветвей замкнутого контура и высоты слоя материала в барабане; диаметр выпускных отверстий в барабане $d_{\text{вып}}=5.0$ мм красная линия $-H_{\text{сл}}=260$ мм; синяя линия $-H_{\text{сл}}=380$ мм; серая линия $-H_{\text{сл}}=500$ мм

Поэтому, когда угловая скорость ротора (частота) начинает превышать угловую скорость барабана на величину $\Delta n = (n_{pot} - n_{6ap}) > 400$ об/мин при заданной угловой скорости барабана, то происходит проскальзывание частиц слоев верхнего и нижнего столба относительно друг друга. В результате такого взаимодействия интенсивность их контактов снижается. Следовательно, объем выхода частиц самых мелких фракций $0.27 \div 0$ мм будет снижаться, а более крупных возрастать.

Дляфракции1,2÷0,63 мм характерной особенностью является практическое постоянное не зависящее от величины кинематического несоответствия ветвей замкнутого контура содержание этой фракции в готовом продукте (рис. 4). Это обусловлено тем, что в какой-то момент при определённых условиях процесс измельчения приобретает равновесный характер, когда процессы раскалывания и истирания равновесны, но уже обозначился плавный переход в процессы совращения размеров частиц в основном за счёт их истирания между собой.

Для фракции 0,63÷ 0,27 и 0,27÷ 0 мм (рис. 5, 6) характерно то, что образовавшиеся частицы после предыдущих процессов будут преобладать в общем объёме циркулирующей по тороидальной траектории массы кусковатой формы, находящейся в барабане, после первичного измельчения примут шаровую или овальную форму. Поэтому каждая вновь образованная частица при движении вдоль стенок внутренней полости барабана будет соприкасаться не по всей поверхностью, с ней только в одной отдельной точке.

Можно утверждать, что при таких значениях кинематического несоответствия изменение размеров частиц будет происходить главным образом преобладания процессов не раскалыва-

ния, а истирания, который приводит к большему объему выхода самых мелких фракций. При возрастании величины кинематического несоответствия, которая происходит за счет увеличения угловой скорости ротора, частицы материала, находящиеся в полости барабана и примыкающие к его стенкам начинают проскальзывать относительно неё. Проскальзывание частиц приводит к тому, что эти частицы не принимают участие в перемещении по наиболее выгодной для осуществления процесса самоизмельчения тороидальной траектории. Поэтому циркуляция частиц происходит менее интенсивно в вертикальной плоскости, и процесс самоизмельчения начинает затухать по мере возрастания величины кинематического несоответствия. Поэтому возрастания величины кинематического несоответствия более Ікн>0,38 будет снижаться интенсивность взаимодействия частиц, а выход фракций $0.27 \div 0$ и $0.63 \div 0.27$ мм в процентном соотношении будет уменьшаться.

Таким образом, по полученным данным образования гранулометрического состава готового продукта можно с большой долей вероятности можно утверждать, что процесс измельчения в мельнице системы «МКАД» характеризуется тремя сопроцессами. При этом для самых крупных фракций 5÷3 и 3÷1,2 мм процесс измельчения исходного материала протекает в основном за счёт раскалывания и удара, для фракций 1,2÷0,63 является переходным (равновесным) процессом, при котором увеличение Ікн не влияет на изменение этой фракции и интенсивным истиранием, при котором увеличение Ікн приводит к существенному снижению содержание в продукте помола содержание наиболее мелких фракций 0,63÷0,27 и 0,27÷0 мм.

Исследование влияния высоты слоя на формирование гранулометрического состава продукта измельчения показывает следующее.

Высота столба материала над роторомНсл будет влиять на выход фракций самых мелких фракций 0,27 ÷0 и 0,63÷0,27 мм. Наибольший её выход происходит при высоте $H_{cn} = 380$ мм, а минимальная при слоя высотах соответственно 500 и 260 мм – красная и синяя линия. При этом зависимость выхода этих фракций при высотах $380 \text{ мм и } 500 \text{ мм отличаются не более } 4\div7 \%.$ Выход этих фракций при высоте 260 мм во всех случаях меньше в среднем на 10÷15 %, чем при высоте 380-500 мм. При высоте более 500 мм выход фракций 0,27 ÷0 и 0,63 ÷0,27 мм начинает снижаться более резко. Это можно объяснить следующим образом. При высотах $H_{cn} = 260$ мм и менее процесс самоизмельчения происходит менее интенсивно, чем при больших высотах. Это происходит потому, что с уменьшением высоты столба материала над ротором, снижается давление, которое оказывают верхние слои материал на нижний слои, расположенные над ротором, которое должно находиться в пределах 0,005–0,05 MΠa [13].

Кроме того, в исследованиях было установлено, что при высотах более 500 мм при одновременном вращении ротора и барабана при средней крупности исходного материала, равной d_{cp} = 40 мм, в средней части столба образуются пустоты, и целостность столба нарушается. Поэтому образование этих пустот нарушает циркуляцию материала, интенсивность взаимодействия кусков и частиц снижается, а объем выхода мелких фракций снижается.

Следовательно, высота столба материал над ротором в пределах H_{cn} = $380 \div 500$ мм является наиболее оптимальной, при которой способ самоизмельчения будет осуществляться с большим выходом самых мелких фракций (45÷70 %).

Анализ зависимостей рассева готового продукта от высоты столба материала, находящегося над ротором, и величины кинематического несоответствия ветвей замкнутого контура для фракции $1,2\div0,63$ мм показывает, что его состав остается практически неизменным для всех диаметров выпускных отверстий и составляет в среднем 5-7 % от общего выхода фракций. Это явление объяснятся следующим образом.

В начальный период самоизмельчения, когда протекает преимущественно процесс раскалывание исходных кусков за счет центробежных сил вращающегося ротора, наступает процесс перераспределения одного процесса с преимущественным способом раскалывания частиц и переход к преобладанию процесса их истирания. Этот переходной процесс представлен на рис.

5.15-5.19, где процесс образования фракции 1,2÷0,63 мм имеет практическую линейную зависимость, близкую к функции $y_3 = f(C)$ для высоты столба 380 и 500 мм и $y_2 = f(-ax + C)$ для высоты 260 мм. Характер последней зависимости объясняется менее интенсивным взаимодействием частиц из-за ослабевающего влияния давления верхних слоев на нижние.

Анализ зависимости выхода самых крупных фракций 3,0÷1,2 мм и фракции 10,0÷3,0 мм от высоты столба материала над ротором и величины кинематического несоответствия ветвей замкнутого контура для всех размеров выпускных отверстий имеют полиноминальную возрастающую зависимость типа

$$y_1 = f(a_1x^2 + b_1x + C_1),$$
 (1)

Т.е. с возрастанием величины кинематического несоответствия ветвей замкнутого контура увеличивается в готовом продукте выход фракций $10.0 \div 3.0$ и $3.0 \div 1.2$ мм.

Причина такого протекания процесса объяснятся тем, что в первоначальный период процесса самоизмельчения для кусков преобладающим способом сокращения их размеров является раскалывание, которое осуществляется за счет кинетической энергии вращающегося ротора. Поэтому с увеличением угловой скорости ротора, а с ним и величины кинематического несоответствия объем выхода этих фракций будет возрастать.

Анализ зависимость выхода самых крупных фракций 3,0÷1,2 мм и фракции 10,0÷3,0 мм от высоты столба материала над ротором и величины кинематического несоответствия ветвей замкнутого контура для всех размеров выпускных отверстий имеют полиноминальную возрастающую зависимость типа

$$y_2 = f(a_2x^2 + b_2x + C_2),$$
 (2)

Т.е. с возрастанием величины кинематического несоответствия ветвей замкнутого контура увеличивается в готовом продукте выход фракций $10.0 \div 3.0$ и $3.0 \div 1.2$ мм.

Это объясняется тем, что в первоначальный момент времени ив начале процесса самоизмельчения преобладающим способом сокращения их размеров является раскалывание за счет кинетической энергии вращающегося ротора. Поэтому с увеличением угловой скорости ротора, а с ним и величины кинематического несоответствия удельный вес выхода этих фракций будет возрастать.

Выволы

Результаты экспериментальных исследований влияния конструктивных и режимных параметров на формирование гранулометрического измельченного материала (мергеля) для вертикальной мельницы динамического самоизмельчения системы «МКАД» позволили сделать следующие выводы.

- 1. Конструктивные и режимные параметры влияют на формирование гранулометрического состава измельченного материала, что позволяет путём их регулирования в процессе работы мельницы получать в соответствии с требованиями производства необходимый состав этого продукта, что невозможно достичь в мельницах системы «МАЯ».
- 2. Установлены зависимости гранулометрического состава готового продукта при измельчении мергеля от основных влияющих факторов высоты столба материала, находящегося над ротором, кинематического несоответствия ветвей замкнутого контура и диаметра выпускных отверстий в барабане измельчительного устройства.
- 3. При увеличении кинематического несоответствия ветвей замкнутого контура с $I_{\text{кн}}$ = 0,38— 0,48 и частоте оборотов ротора более 292 об/мин интенсивность взаимодействия частиц внутри барабана снижается. Это объяснятся тем, что за счет центробежных сил вращающегося ротора частицы, ударяясь о внутреннюю поверхность барабана, раскалываются на ней и образуют липкий мелкий слой измельченных частиц, который препятствует эвакуации их из мельницы, что снижает производительность и удельный вес наиболее мелких фракций размером 0,63 \div 0 мм.
- 4. Образование большего содержания не эвакуируемых фракций в барабане (переизмельчение) приводит к нарушению целостности столба материала над ротором как единого объекта, что нарушает процесс возврата части подведенной к нему мощности и рекуперации её, которая реализуется при её передаче по двум параллельным направлениям от приводного двигателя. Это ведёт к снижению производительности росту энергозатрат и изменению гранулометрического состава готового продукта
- 5. Установлены соотношения высоты слоя над ротором и среднего размера исходных кусков материала, при которых достигаются максимальные значения производительности и гранулометрического состава готового продукта.
- 6. Полученные экспериментальные поданные, показывающие формирование гранулометрического состава измельчённого материала (мергеля) в зависимости от кинематического несоответствия ветвей замкнутого контура и высоты слоя материала в барабане позволят их использовать при проектировании мельниц си-

стемы «МКАД», в конструкции которых имеется замкнутый контур.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Клыков Ю.Г. Селективное измельчение минерального сырья. Владикавказ: Терек, 1997, 155 с.
- 2. Сабиев У.К., Фомин В.В., Сабиев И.У. Повышение однородности гранулометрического состава измельченного материала в измельчителе центробежно-роторного действия // Вестник Алтайского государственного аграрного университета. №4(78). С. 82–84.
- 3. Смирнов С.Ф. Мизонов В.Е., Красильников А.Г., Жуков В.П. Ячеечная модель измельчения материала в трубной мельнице замкнутого цикла // Известия вузов. Химия и хим. технология. 2007. Т. 50, вып. 3. С. 98–100.
- 4. Андреев С.Е., Перов В.А., Зверевич В.В. Дробление, измельчение и грохочение полезных ископаемых. 3-е изд., перераб. и доп. М.: Недра, 1980. 415 с.
- 5.Пат. на изобретение №2465960 Российская Федерация. МПК В02С13/14.Измельчитель динамического самоизмельчения / Дровников А. Н., Остановский А. А., Никитин Е. В., Павлов И. А, Осипенко Л. А., Агафонов Н. А; Заявка: 2011106231/13, заявл. 17.02.2011; Патентообладатель: Государственное образовательное учреждение высшего профессионального образования "Южно-Российский государственный технический университет (Новочеркасский политехнический институт)", опубл. 10.11 2012 г. Бюл. №31. 5 с.
- 6. Пат. на изобретение № 2496581 Российская Федерация. МПК В02С13/14. Мельница/ Дровников А. Н., Остановский А. А., Маслов Е. В., Бурков Н. В., Романенко Г. Н.; Заявка:2012124864/13, заявл. 14.06.2012; Патентообладатель: Государственное образовательное учреждение высшего профессионального образования "Южно-Российский государственный технический университет (Новочеркасский политехнический институт)" (RU), Опубл. 10.11 2012 г. Бюл. №31. 5 с.
- 7. Пат. изобретение $N_{\underline{0}}$ на 2520008Российская Федерация. МПК В02С13/14. Измельчитель динамического самоизмельчения материала /Дровников А. Н., Остановский А. А., Маслов Е. В., Рыбальченко А. Н.; 2013105689/13; заявл. 11.02. 2013; Патентообладатель: Федеральное государственное бюджетное образовательное учреждение высшего прообразования -онжОі" фессионального Российский государственный университет экономики и сервиса" (ФГБОУ ВПО "ЮРГУЭС"), опубл. 20.06 2014 г., Бюл. №17. 4 с.

- 8. Пат.на изобретение №2526668 Российская ФедерацияМПК В02С13/14. Устройство для измельчения материала/ Дровников А. Н., Остановский А. А. Заявка: 2012149328/13, заявл. 19.11.2012; Патентообладатель: Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Южно-Российский государственный университет экономики и сервиса" (ФГБОУ ВПО "ЮРГУЭС") (RU) Опубликовано: 27.08.2014. Бюл. №19. 5 с.
- 9. Пат. на изобретение №2558205 Российская Федерация МПК В02С13/14. Мельница. Дровников А. Н., Остановский А. А., Никитин Е. В., Маслов Е. В., Городнянский В. М., Черкесов В. Ю., Заявка: 2014110456/13, заявл. 18.03.2014; Патентообладатель: Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Донской государственный технический университет" (ДГТУ), опубл. 27.07.2015, Бюл. №21. 6 с.
- 10. Пат. на изобретение №2539200 Российская Федерация МПК В02С13/14 Способ измельчения материалов и мельница для его осуществления. Дровников А.Н., Исаков В.С., Остановский А.А., Маслов Е. В. Заявка: 2013136461/13, 02.08.2013, дата подачи заявки:02.08.2013; Патентообладатель: федеральное государственное бюджетное образовательное

- учреждение высшего профессионального образования "Южно-Российский государственный технический университет (Новочеркасский политехнический институт)" (RU), опубл. : 20.01.2015.Бюл. N 21.6 с.
- 11. А. с. № 651845 (СССР),МПК4 В 02 С13/14. Способ измельчения материала / Ягупов А.В.; заявитель Северо-Кавказский горно металлургический институт. № 2331562;заявл. 09.06 1976, опубл. 15.03. 1979,Бюл. №11. 3 с.
- 12. Ягупов А.В. Новый способ измельчения руд // Горный журнал. 1976.№11. С.71-73.
- 13. А.с. № 710632 (СССР), МКИ В 02 С 13/00. Мельница динамического самоизмельчения «МАЯ»/ Ягупов А. В.; заявитель Северо-Кавказский горно-металлургический институт, заявка № 2325134; заявл. 17.02. 1976, опубл. 25.01.1980, Бюл. №3. 4 с.
- 14. А. с.937002Мельница динамического самоизмельчения "МАЯ"; Ягупов А.В. Заявка: 3003970, 13.11.1980. заявитель Северо-Кавказский горно-металлургический институт. Опубликовано: 23.06.1982. Заявитель: Северо-Кавказский горно-металлургический институт.
- 15. Остановский А.А., Маслов Е.В. К определению производительности и удельных энергозатрат в вертикальной мельнице динамического самоизмельчения с силовым замкнутым контуром // Известия высших учебных заведений. Северо-Кавказский регион. 2015. № 3. С. 59–67.

Ostanovskiy A.A., Osipenko L.A., Chirskoy A.S., Martinenko I.A. ANALYSIS OF THE INFLUENCE OF THE KINEMATIC INCONSISTENCY OF BRANCHES OF A CLOSED LOOP ON THE GRANULOMETRIC COMPOSITION OF THE FINISHED PRODUCT IN MILLSDYNAMIC SELF-CRUSHING OF THE «MCAD» SYSTEM

The results of experimental studies of the dependence of the granulomeres composition of marl on the kinematic inconsistency of branches of a closed contour in a vertical mill of dynamic self-crushing of the "MCAD" system are presented. Graphic dependencies of this process are presented, a description is given of the features of the physical picture of the ongoing process

Key words: mill, energy efficiency, particle size distribution, fraction, kinematic mismatch, rotor, drum, material column, circulating power

Остановский Александр Аркадьевич, докторант, кандидат технических наук, доцент кафедры «Технические системы ЖКХ и сферы услуг».

Институт сферы обслуживания и предпринимательства (филиал) Донского государственного технического университета.

Адрес: Россия, 346500, г. Шахты Ростовской области, ул. Шевченко, 147

E-mail: Ostanovskiy51@mail.ru

Осипенко Людмила Аркадьевна, кандидат технических наук, доцент кафедры «Технические системы ЖКХ и сферы услуг».

Институт сферы обслуживания и предпринимательства (филиал) Донского государственного технического университета.

Адрес: Россия, 346500, г. Шахты Ростовской области, ул. Шевченко, 147

E-mail: aaanet@ mail.ru

Чирской Александр Семёнович, кандидат технических наук, доцент.

Шахтинский институт (филиал) Южно-Российского государственного политехнического университета (НПИ) им. М. И. Платова

Адрес: Россия, 346500, г. Шахты, Ростовская обл., пл. Ленина №1.

E-mail: alex.chir65@mail.ru

Мартыненко Игорь Андреевич, кандидат технических наук, доцент.

Шахтинский институт (филиал) Южно-Российского государственного политехнического университета (НПИ)

им. М. И. Платова

Адрес: Россия, 346500, г. Шахты, Ростовская обл., пл. Ленина №1.

E-mail: geomech1@yandex.ru