Кудеярова Н.П., канд. техн. наук, проф., Бушуева Н. П., канд. техн. наук, доц.

Белгородский государственный технологический университет им. В.Г. Шухова

АКТИВИЗАЦИЯ БЕЛИТОВЫХ ФАЗ СТАЛЕПЛАВИЛЬНОГО ШЛАКА В ПРИСУТСТВИИ ОКСИДА КАЛЬЦИЯ

kudeyarova@intbel.ru

Отходы металлургических комбинатов могут использоваться при производстве низкообжиговых высокоактивных вяжущих материалов, содержащих белитовую фазу. Металлургический шлак Оскольского металлургического комбината содержит силикаты кальция, магния, алюмосиликаты, оксиды железа. Силикаты кальция в составе преобладают, это преимущественно двухкальциевый силикат в виде ү-модификации, который практически не обладает вяжущими свойствами в естественных условиях твердения. В данной работе, используя методы физикохимического анализа, исследована возможность активизации двухкальциевого силиката шлака в
присутствии оксида кальция, в результате термической обработки и кристаллохимической стабилизации в присутствии примесей. Получено, при обжиге температура фазового полиморфного превращения 2CaOSiO2 ү- в а'-модификацию совпадает с процессом декарбонизации СаСО3, а также
присутствие в шлаке оксидов MgO, K2O, MnO, Cr2O3 и других позволяет сохранить в продукте обжига двухкальциевый силикат в гидравлически активном состоянии в виде β- и а'-модификаций и
получить в смеси с тонкоизмельченным кварцевым песком вяжущее гидротермального твердения,
активность которого превышает традиционно используемого известково-кремнеземистого вяжущего почти в два раза.

Ключевые слова. Белитовая фаза, полиморфизм, металлургический шлак, оксид кальция, минералообразование, кристаллохимическая стабилизация.

Введение. Вопросы снижения энергоемкости и сырьевых компонентов в производстве строительных материалов успешно решаются при использовании отходов различных производств [1]. При ЭТОМ уменьшается количество отвалов шлаков, занимающих площади, отведённые под пахотные земли, и улучшается экологическая обстановка региона. Одним из видов металлургических шлаков является сталеплавильный шлак Оскольского электрометаллургического комбината (ОЭМК), который не гранулируется,

а сливается в отвал. При производстве основного продукта на ОЭМКа ежегодно образуется до 600 тыс. тонн такого шлака, количество которого в отвалах ежегодно увеличивается [2].

Методика. Исследования проводились на 2-х компонентной смеси: мел – шлак. Тонко измельченные компоненты смешивались 1:1 И обжигались соотношении при 1000, 1100 температурах И 1150 Химическийй состав компонентов представлен в табл.1.

Таблица 1

Химический состав компонентов

	Содержание оксидов, мас. %								
Компонент	ппп	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	CaO	MgO	SO_3	K ₂ O	Na ₂ O
Мел	42,00	2,00	0,40	0,20	54,00	0,20	0,08	0,09	0,03
Шлак	2,18	22,16	4,23	15,27	42,80	10,16	0,76	0,20	0,028

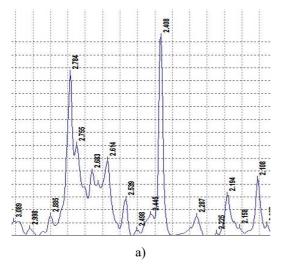
Основная часть. Основными минералами сталеплавильного шлака являются двухкальциевый силикат различных модификаций — белитовая фаза (40-60 мас.%), MgO, SiO₂ а также присутствуют кальциево-магниевые силикаты и алюмосиликаты, железосодержащие минералы. В зависимости от условий охлаждения шлака в белитовой фазе протекают модификационные превращения — возможен переход β-

модификации в γ -2CaO·SiO₂, сопровождающийся увеличением объема и саморассыпанием, и частичная гидратация белита с образованием 2CaO·SiO₂·H₂O - C₂SH(A) [3, 4]. Модуль основности шлака в среднем равен M_o- 1,88, а модуль активности M_a- 0,25.

Фазовый анализ шлака показал на преимущественное наличие шеннонита — умодификации $2CaO\cdot SiO_2$, который в нормальных

Таблица 2

условиях не обладает гидратационными свойствами [5–7]. В связи с этим в работе поставлена задача активизировать белитовую фазу, используя тепловую обработку в присутствии карбонатного компонента. Известно, что превращения отдельных фаз при нагревании оказывает большое влияние на реакционную способность смеси по причине изменений в кристаллической решётке, что интенсифицирует процесс взаимодействия компонентов в системе и, следовательно, увеличивает скорость реакции в несколько раз [4]. Это явление в научной литературе именуется «эффектом Хедвалла» по имени его автора. Особенно интенсивной реакции можно ожидать, когда компоненты системы подвергаются превращениям примерно в одном и том же температурном интервале или когда в системе происходят другие структурные изменения [3]. Обжиг сталеплавильного шлака карбонатного компонента свидетельствует о


стабилизации β-2CaO·SiO₂ белитовой фазы за счет наличия других оксидов [8–11]. Кроме при обжиге смесей наблюдается взаимодействие продуктов разложения шлака и карбоната кальция с образованием новых фаз. анализ продуктов Химический обжига на свободного содержание оксида кальция свидетельствует о его связывании и увеличении количества новообразований - силикатов, появлении алюминатов и ферритов (табл 2). Исходя из химического состава смеси расчетное содержание свободного оксида кальция за счет карбоната полного разложения должно составлять 48,4 мас.%. Однако после обжига при температуре 1000 °C количество СаО_{своб} несколько уменьшилось. Более значительное уменьшение свободного оксида наблюдается при температурах обжига 1100 и 1150 °C.

Содержание свободного оксида кальция после обжига

Температура обжига, °С	Количество СаОсвоб, мас.%				
1000	48,2				
1100	41,1				
1150	40,0				

Эти изменения подтверждаются рентгенофазовым анализом (рис.1).

Кроме этого наблюдаются изменения в белитовой фазе интенсивность дифракционных максимумов для α'- и β- $2CaO SiO_2$ увеличивается (d 2.78, 2.75 Å), что объясняет повышение содержания При повышении двухкальциевого силиката. температуры происхотит полиморфное превращение γ-модификации 2CaO·SiO₂ в α'модификацию. Теоретическая температура этого фазового перехода составляет 850°C, которая практически совпадает с температурой декарбонизации СаСО3. Присутствующие в шлаках оксиды MgO, K2O стабилизируют гидравлически активные формы 2CaO SiO₂. Кроме оксидов, указанных в табл. 1, в шлаках присутствуют МпО, Сг₂О₃ и другие, небольшого количества которых достаточно ДЛЯ кристаллохимической стабилизации β-2CaO SiO₂ и монотропного превращения в 2CaO SiO₂ не происходит [12–13].

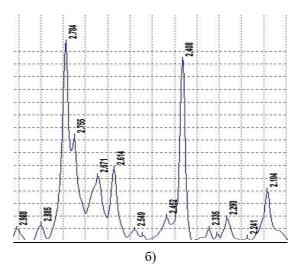


Рис. 1. Рентгенограммы продуктов обжига: а) 1000 °C, б) 1150 °C

Присутствующий в шлаке мервинит $3\text{CaOMgO}2\text{SiO}_2$ (d-2.885Å) сохраняется в продукте обжига, причем его количество несколько увеличивается при повышении температуры обжига (изменяется ширина дифракционных максимумов на рентгенограмме, рис.1). Структура мервинита аналогична структуре α' -модификации 2CaOSiO_2 , он обладает вяжущими свойствами и при гидратации при нормальной и повышенной (до 95 °C) температуре образуются высокоосновные гидросиликаты кальция [14].

Увеличение интенсивности диффракционного пика $2.61\ \text{Å}$ свидетельствует о возможности образования трехкальциевого силиката $3\text{CaO} \cdot \text{SiO}_2$ в результате твердофазовой реакции при наличиии свободного оксида кальция. Все эти изменения и процессы образования новых фаз могут отразиться на гидратационной активности полученных продуктов обжига.

Поскольку продукт обжига содержит значительное количество оксида кальция в свободном состоянии, для его более полного связывания И активизации гидратации белитовой фазы В работе использовалась автоклавная обработка [15, 16]. Исследования проводились на прессованных образцах смеси продукта обжига с тонко измельченным кварцевым песком (удельная поверхность песка составляла $200 \text{ м}^2/\text{кг}$), соотношение которых определяет содержание СаОсвоб. в продукте обжига. Режим автоклавной обработки: температура водяного насыщенного пара 175 °C давление атм, время выдержки, определяемое при рабочем давлении полным связыванием гидроксида кальция гидросиликаты, составляет 6 часов. Контрольный вариант известково-песчаного вяжущего характеризуется прочностью сжатие 61 МПа при неполном связывании известкового компонента. Прочность исследуемых композиций почти в два раза выше (105–110 МПа) при полном связывании гидроксида кальция.

процессе автоклавной обработки ускоряется процесс гидратации белитовой фазы и отмечено полное связывание гидроксида кальция с увеличением гидратных фаз в сравнении с известково-песчаным вяжущим. Новая фаза В основном представлена типа С₂SH(A) и гидросиликатами кальция низкоосновными высокопрочными CSH(B), что использовать это вяжущее при позволит изготовлении изделий, характеризующихся не только высокими прочностными показателями, но и долговечностью.

Выводы. Таким образом температурная обработка сталеплавильного шлака совместно с получаемом при этом оксидом кальция способствует стабилизации гидравлически активных фаз двухкальциевого силиката – β- и α'-модификаций, частичному образованию высокоосновного силиката кальция 3CaO·SiO₂, при автоклавной обработке которых в смесях с кварцевым песком образуются гидросиликаты различного состава.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Лесовик В.С. Использование промышленных отходов КМА в производстве строительных материалов // Использование отходов, промышленных продуктов в производстве строительных материалов и изделий. М. 1987. Вып. 3. 62 с.
- 2. Гуревич Б.И., Тюкавкина В.В. Вяжущие материалы из шлаков черной и цветной металлургии // Цветная металлургия. 2007. № 4. С.10-16
- 3. Бутт Ю.М., Сычев М.М., Тимашев В.В. Химическая технология вяжущих материалов: учеб. для вузов. М.: Высшая школа. 1980. 472 с.
- 4. Тимашев В.В. Высокотемпературная обработка портландцементных сырьевых смесей //Цемент. 1987.№ 12. С. 3–6.
- 5. Классен В.К., Текучева Е.В., Дроздов А.А. Эффективность использования электросталеплавильных шлаков в качестве сырьевого компонента для производства цемента // Техника и технология силикатов. 2006. №4. С. 7–15.
- 6. Кудеярова Н.П., Цыпченко Н.В. Фазовые превращения шлака ОЭМК при повышенных температурах в присутствии оксида кальция // Сб. докл. «Современные проблемы строительного материаловедения». Белгород. 2001. 4.1. С. 298–301.
- 7. Кудеярова Н.П., Цыпченко Н.В. Вяжущее на основе сталеплавильных шлаков // Известия ВУЗов.Серия Строительство. 2004. №5. С. 48-50.
- 8. Шаповалов Н.А., Бушуева Н.П., Панова О.А., Бушуев Д.А. Научные основы эффективного применения отходов флотации хвостов мокрой магнитной сепарации при получении белитсодержащего вяжущего // Фундаментальные исследования. 2015. № 2. С. 3476–3483.
- 9. Shapovalov N.A., Bushueva N.P., Panova O.A. Low roasting cementitious matter of limebelite components using flotation waste of residual dumps of wet magnetic separation at the mining and processing complex World Applied Sciences Journal. 25 (12). 2013. 1758–1762.

- 10. Кудеярова Н.П., Цыпченко Н.В. Вяжущее на основе сталеплавильных шлаков // Известия ВУЗов. Серия Строительство. 2004. №5. С. 48–50.
- 11. Шаповалов Н.А., Бушуева Н.П., Панова О.А. Известково-белитовое вяжущее на основе отходов ГОКов // Фундаментальные исследования. 2013. № 8. С. 1368–1372.
- 12. Шаповалов Н.А., Бушуева Н.П., Панова О.А. Влияние железосодержащих минералов на процесс образования двухкальциевого силиката «Технические науки от теории к практике»: материалы XXI международной заочной научнопрактической конференции. (15 мая 2013 г.); Новосибирск: Изд. «СибАК», 2013. С. 146–152.
- 13. А.с. СССР № 1655946. Бушуева Н.П., Воробьев Х.С., Соколовский В.А., Кудеярова Н.П. Вяжущее для изготовления изделий автоклавного твердения // 1991. Бюл. № 22.
- 14. Горшков В.С., Тимашев В.В., Савельев В.Г. Методы физико-химического анализа вяжущих веществ. М.: Высшая школа, 1981. С. 249–250.
- 15. Кудеярова Н.П., Гостищева М.А. Гидратационная активность C₂S в автоклавных условиях // Строительные материалы. 2007. № 8. С. 34–35.
- 16. Кудеярова Н.П., Гостищева М.А. Активизация процесса гидратации MgO и C_2S в автоклавных условиях //Известия вузов. Строительство. Новосибирск. 2007. № 9. С. 23–27.

Kudeyarova N.P., Bushueva N.P. ACTIVATION PHASE BELITE STEELMAKING SLAG IN THE PRESENCE OF CALCIUM OXIDE

Waste of iron and steel works can be used by production low - the calcination highly active knitting materials containing a belite phase. Metallurgical slag of Oskolsky iron and steel works contains silicates of calcium, magnesium, aluminosilicates, iron oxides. Calcium silicates in structure prevail, it is mainly two-calcic silicate in the form of γ -modification, which practically doesn't possess the knitting properties under natural conditions of curing. In this work, using methods of the physical and chemical analysis, the possibility of activization of two-calcic silicate of slag in the presence of calcium oxide, in result of heat treatment and crystal chemical stabilization in the presence of impurity is investigated. It is received as when roasting temperature of phase polymorphic transformation of $2CaOSiO_2 \gamma$ - in α '- modification coincides with process of decarbonization of $CaCO_3$, and also presence at slag of oxides MgO, K_2O , MnO, Cr_2O_3 and others allows to keep in a roasting product two-calcic silicate in hydraulically active state in a look β - and α '-modifications and to receive in mix with finely grinded quartz sand knitting hydro-thermal curing which activity exceeds traditionally used limy-silicic knitting almost twice.

Key words: Belite phase, polymorphism, metallurgical slag, calcium oxide, mineralogenesis, crystal chemical stabilization.

Кудеярова Нина Петровна, кандидат технических наук, профессор кафедры технологии цемента и композиционных материалов.

Белгородский государственный технологический университет им. В.Г.Шухова.

Адрес: Россия, 308012, Белгород, ул. Костюкова, д. 46.

E-mail: kudeyarova@intbel.ru

Бушуева Наталья Петровна, кандидат технических наук, доцент кафедры технологии стекла и керамики Белгородский государственный технологический университет им. В.Г.Шухова.

Адрес: Россия, 308012, Белгород, ул. Костюкова, д. 46.

E-mail: px_2011@list.ru