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Abstract. The article considers the problem of automation of the formation of large complex 

parts, products and structures, especially for unique or small-batch objects produced by a 

method of additive technology [1]. 

Results of scientific research in search for the optimal design of a robotic complex, its modes 

of operation (work), structure of its control helped to impose the technical requirements on the 

technological process for manufacturing and design installation of the robotic complex. 

Research on virtual models of the robotic complexes allowed defining the main directions of 

design improvements and the main goal (purpose) of testing of the the manufactured prototype: 

checking the positioning accuracy of the working part. 

 

 

1. Introduction 

Formation methods of large complex parts [2], products and structures, especially for unique or small-

batch objects are critical in the modern market conditions, because they determine configuration, 

dimensions and quality indicators of the final product. Speeding-up of design and prototyping of a 

future product, as well as production of process gear for formation of components, are becoming 

especially timely tasks. [3]. To resolve the task, a decision was made to design an experimental sample 

of a robotic complex (RC) to implement full-scale additive technology with innovative materials [4, 

5].  

2. Main part 

Determining the coordinate system. Movement trajectory of the end-effector of the RC is built in a 

single selected coordinate system [6], to which all the movements of units, elements and mechanism 

of the robotic complex are fixed [7]. Figure 1 shows a diagram of an overhead manipulator-based RC. 

The diagram shows foundation 1, which supports rail track 2 with 6000 mm gage, where portal 3 is 

moving, which serves as the base of the robotic complex and its main support structure. The 

foundation may be provided with a special platform, serving as a base to fabricate a product by 

layering the construction mixture. At that, the platform shall be able to move on its own in parallel to 

the portal to remove the product from the formation zone. Portal 3 of the RC is provided with  

horizontal platform 4 with an ability of vertical movement along the axis which is strictly orthogonal 

to the plane of the foundation 1. On platform 4 there is bridge 5, moving in parallel to the direction of 

portal movements or to rail track 2; at that, the bridge is provided with a precision drive for exact 

positioning in the horizontal plane. 

http://creativecommons.org/licenses/by/3.0
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Bridge 5 is provided with carriage 6, moving in the direction perpendicular to that of the bridge. 

The carriage is provided with end-effector 7. In the variant of RC shown in Figure 1, end-effector is a 

cylinder provided with a nozzle that forms a stack of material for laying down. The mixture may be 

supplied from an external source as well, but in any case, the nozzle shall form the plastic stack of the 

material. 

 
 

 

Figure 1. A diagram of a robotic complex based on an overhead 

manipulator. 

The RC coordinate system composed is shown in Figure 2 and has three degrees of freedom: Xb; 

Yb: Zb.  It is the main or basic coordinate system, linked to the foundation of the model shown in 

Figure 1. On the foundation, there is a working platform intended for product formation, it has its own 

coordinate system: Xpj; Ypj: Zpj. The product being formed on the platform has its own coordinate 

system: Xpt; Ypt; Zpt. Thus, to determine coordinates of the product in the coordinate system, one shall 

use expression 1, where corresponding designations of the coordinates are given [8, 9]: 

  

             
             
             

 , (1), 

where X0pj; Y0pj; Z0pj is a displacement of the working platform coordinates with respect to the origin 

of the foundation coordinate system, mm; X0pt; Y0pt; Z0pt is a displacement of the product coordinate 

system origin from the origin of the working platform coordinate system. 

The portal has only one axis of displacement with respect to the basic coordinate system (that of 

foundation): Yp; at that, its movements are coarse, but nevertheless, they are taken into account when 

moving the end-effector. The amount of this displacement we will designate as p, it may has either a 

negative, or a positive direction. The bridge may also move along the basic axis  Yb, changing the  Ycr 

coordinate factoring in the parameter p; accuracy of bridge positioning and that of other components 

is significantly lower than the allowance values of the final product, thus, they may be dismissed 

during the calculations. As per formula 2, location of the end-effector coordinate system along the Y 

axis is determined with: 

 Y_c=Y_p+Y_cr±p , (2) 
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Figure 2: RC coordinate system 

However, p is constant, as the portal assumes a rigid fixation in a given position. 

The carriage with the end-effector is equipped for accurate movements along the X axis, that is, the 

final position of the end-effector along the axis is determined with formula 3: 

 X_c=Xp+X0cg, (3) 

where X0cg is a displacement of the carriage coordinate system with respect to the basic coordinate 

system. 

A similar expression is given for vertical movements along the Z=Zp axis, that is, setting of the 

end-effectors is performed with the platform alone. 

Movements along the Z axis are performed only when switching to the next layer, the profile of the 

product is formed in the XY plane. Step of the platform along the vertical axis is linked only to the 

process parameters, as it is defined by the required thickness of the layer, which in its turn, is defined 

by rheological properties of the material and is determined experimentally [10]. 

Routing the end-effector movement. Movement of the end-effector in the XY plane may have either 

linear or circular trajectory [1, 12, 13]. 

A feature of the end-effector trajectory generation is that the trajectory is an axis of a stack being 

formed by the nozzle out of the building material, as it is shown in Figure 3, but only for movements 

along the X axis with the speed of v. 

а) 

 

b) 

 

Figure 3. A diagram of material placement along the trajectory: a – stack profile formation in the 

transverse direction; b – stack formation in the longitudinal direction. 

 

An ideal layering with a circular profile of radius r is when nozzle height H is determined by radius 

R; however, due to plasticity (plastic flow) of the material, it is impossible, because the material of the 

stack subside to a height h, at that, the stack being formed has a width of b. When the material 

solidifies, it contracts as it is defined by its properties, at that, the stack width changes to b1=kу·b, 
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where kу is the contraction coefficient of the material. This implies that when the end-effector 

trajectory changes, a flaw may arise on the trajectory: disruptions or deposits of the stack material. The 

proposed variants for trajectory rotation are shown in Figure 4. 

а) 

 

b) 

 

Figure 4. Variants for change of direction on a trajectory: a – angular; b – radial 

 

In the angular variant of the trajectory formation, there is an abrupt change. At that the end-

effectors shall stay at the tipping point for some time, for in this point a change of drive speed along 

the axes take place, or the direction of the displacement vector changes. So, it is necessary either to 

stop the feeding of material, or to take into account the defect formation in the material stack, a deposit 

with a diameter dд. That is, feeding of additional material to the tipping point, the additional volume is 

determined as: Vm=vm·F·t, mm
3
, where vm is the material feeding speed, mm/s, F the sectional area of 

the nozzle, mm
2
, t is the stop time, s. 

In the radial change of the end-effector trajectory, when the radius of trajectory reduces, there is an 

overlay of material at the turn location. At that, one should assess the changes in stack thickness 

depending on the turn radius Ra:  the larger the bend radius is, the less the width b2 and the distortion 

in the stack profile and trajectory are, and vice versa. 

The trajectory is divided into sections, determined by interpolation, at that, only two types are 

distinguished: linear and circular interpolation, a graphical representation is shown in Figure 5. In 

linear interpolation, the displacement speed in its vector form:               , in case                   

and                    , that is, the end-effector is moved only along one of the axes [14]. 

 
Figure 5. Trajectory formation for the end-effector displacement with sections of various interpolation 

types 

 

Thus, the end-effector displacement rate between point 1 and point 2 may be defined as   

   
    

 . At that, the path along each of the axes is determined as x2 –x1 и y2- y1, where x and y are 

the coordinates, time to perform the displacement along each of the axes is tx1-2=ty1-2. Thus, it may be 

concluded that in linear displacement along each of the axes, synchronization of changes in speed 

allows one to completely avoid interpolation of their trajectory, that is, a stepped form. The ratio of 

speeds may be expressed and tangent of the trajectory tilt angle with respect to the X axis is 
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, or      

    

    
, which is enough for control over the drives. According to Figure 5, the 

speed vector is always directed along the normal line to the radius of the stack obtained; only the value 

of aperture angle AR change, thus, its monitoring allows one to determine the values of speed in each 

point of the trajectory. From Figure 7, vx= v·cos(90- AR), vy=v·sin(AR), thus, by monitoring changes in 

AR from min to max, one may calculate changes of speed along each of the axes at any point of the 

circular trajectory. The step of the AR angle is the interpolation step, at that, a change in the angle may 

be assigned by a certain function AR=f(t), that is, the angle will change during the period from t2 to t3  
from its initial value to the final value, thus, serving as a path identifier for a known radius R [15].  

The final model of the additive manufacturing end-effector displacement for the time criterion has 

the following form: having divided the sections with linear and circular interpolation, for the linear 

interpolation: 

     
          

           

  

 
   , min,  (4) 

where i is the number of a trajectory section; vi  is respectively a speed at the  i-th section of the 

trajectory, m/min. 

For the circular interpolation: 

     
      

      
 
   , min,  (5) 

where Ri  is a radius of a corresponding circular section in the same units of measure as the 

coordinates; ARi is the aperture angle of the circular section. 

Putting expressions 4 and 5 together for presence of any types of interpolation, one obtains: 

    

 

 
 

          
           

  
               

 
      

      
          

 

 
 

 

 
   , min.  (6) 

It is evident that the value of coordinates for each drive shall be re-calculated in accordance with 

formulas 2 and 3. At that, parameter vi is still in the formula 6, for each section, because it is necessary 

to separate the transitions for laying down the material, and transitions for service movements of the 

end-effectors [16]. To lay down the material the end-effector is moved at a speed necessary to lay 

down a required volume of material on the working base surface, thus, knowing the wall thickness of 

the product being formed, one may calculate the current material consumption per a unit of time [17, 

18]. 

 

3. Findings 
Process parameters of RC functioning are determined for manufacturing of products of various forms 

and dimensions: 

1. A coordinate system of the robotic complex is defined as the foundation coordinate system 

linked to the local coordinate systems of all the units of the robotic complex and allowing one to 

obtain the product contour by calculating the ratios of the end displacements along the product 

coordinate axes. 

2. It has been proven that dividing the end-effector displacement trajectory into elementary sections 

with only two attributes, linear and circular, allows constructing a model of the displacement 

trajectory, reflecting changes in the coordinates in the plane of the product layer being worked on, thus 

allowing one to obtain a command line structure for controlling the end-effector displacement, 

characterized with the minimal set of commands needed to obtain the product contour. 
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4. Conclusion 
An experimental specimen of a robotic complex, manufactured and installed in accordance with the 

technical requirements, was subjected to testing according to the testing program and procedure 

developed during this project. According to the test protocol, maximum positioning error of the RC 

end-effector amounted to 0.24 mm, which satisfies the conditions of the technical design specification. 

Thus, the parameters set in the design task were attained during the performance of the works. 
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