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Abstract In this paper we propose a method for solving systems of nonlinear inequalities
with predefined accuracy based on nonuniform covering concept formerly adopted for global
optimization. The method generates inner and outer approximations of the solution set. We
describe the general concept and three ways of numerical implementation of the method. The
first one is applicable only in a few cases when a minimum and a maximum of the constraints
convolution function can be found analytically. The second implementation uses a global
optimizationmethod to find extrema of the constraints convolution function numerically. The
third one is based on extrema approximation with Lipschitz under- and overestimations. We
obtain theoretical bounds on the complexity and the accuracy of the generated approximations
as well as compare proposed approaches theoretically and experimentally.

Keywords Systems of non-linear inequalities · Global optimization · Approximation ·
Robot’s working area

The work was supported by the Russian Science Fund, project 16-19-00148.

B Mikhail Posypkin
mposypkin@gmail.com

Yuri Evtushenko
evt@ccas.ru

Larisa Rybak
rl_bgtu@intbel.ru

Andrei Turkin
aturkin@org.miet.ru

1 National Research University Higher School of Economics, Moscow, Russia

2 Federal Research Center Computer Science and Control of Russian Academy of Sciences, Moscow,
Russia

3 Belgorod State Technological University named after V.G. Shukhov, Belgorod, Russia

4 National Research University of Electronic Technology, Moscow, Russia

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10898-017-0576-z&domain=pdf
http://orcid.org/0000-0002-4143-4353


130 J Glob Optim (2018) 71:129–145

1 Introduction

Let nonempty set X ⊂ R
n be a solution of the following system of nonlinear inequalities

{
g j (x) ≤ 0, j ∈ 1,m,

ai ≤ xi ≤ bi , i ∈ 1, n,
(1)

where functions g j (x) are continuous.
Such systems arise in many applications and have been studied extensively [10,12,28].

For instance, in [10] the authors transform Problem (1) into an inequality constrained opti-
mization problem and solve it by using the filter method [7]. The authors of [12] assume that
G(x) = (g1(x), . . . , gm(x))T has Lipschitz continuous Jacobian, transform Problem (1) into
an equality and solve it by using a smoothing-type algorithm. A similar approach is used in
[28].

Methods proposed in [10,12,28] are aimed at finding one or several points satisfying the
system of inequalities. However, there are many applications where it is necessary to get a
whole set of solutions. Heuristic methods for generating a tetrahedral 3-D mesh approximat-
ing the solution set of non-linear inequalities are suggested in [8]. Papers [15,16,19] propose
and study polyhedral approximations of convex sets. Approximations of sets defined as
images of continuous mapping of compact sets are described in [4].

Interval analysis techniques [11,21] can also be applied to approximating the solution set of
non-linear equalities and inequalities. See [13,14,22] for examples. The approach most close
to ours is described in [13,14]. Authors consider a set-inversion problem stated as follows.
Given a continuous mapping f (x) : R

n → R
m and a set Y ⊆ R

m approximate the set
f −1(Y ). Authors developed a general SIVIA (Set Inversion via Interval Analysis) algorithm
that constructs an inner and an outer approximations of f −1(Y ) set. The approximations
consist of non-intersecting boxes. It was shown that under certain assumptions at the limit
the approximations produced by SIVIA converge to the target set. Obviously the problem
(1) can be treated as a particular case of the set inversion problem (see [13] for details).

The main difference between SIVIA and our method is that we do not limit our approach
to interval analysis and study in deep two special cases where the bounds are computed using
a global optimization techniques (Sect. 4) or by Lipschitzian estimations (Sect. 5). For these
two cases we derive formulas characterizing the precision of constructed approximations.
Such formulas are hard to obtain for interval bounds since the accuracy of such bounds is
difficult to estimate. It should be noted that the Lipschitzian techniques has two advantages
over the interval analysis approach. The first advantage is that Lipschitzian constants can
be efficiently approximated [17,26] and thus can be used for “black-box” problems with no
analytical representation of the constraints. Such problems obviously can’t be handled by
the interval methods. The second advantage is that Lipschitzian techniques can be used for
sets with more complex shape than boxes e.g. simplices or other convex polytopes where the
use of interval bounds is problematic [24]. The latter approach seems to be quite prospective
since polyhedral approximations are more accurate than box-based ones.

The objective of this paper is to describe the solution set for Problem (1) with guaranteed
accuracy. It worths noting that the solution set can be non-convex and disjointed. The problem
under consideration has a lot in common with the deterministic global optimization [1,3,5,
17,18] where the goal is to find a solution and prove its optimality to a certain degree of
accuracy. Below we show how global optimization techniques elaborated in [3,5] can be
tailored to approximate the solution set of system of inequalities with the given precision.
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Thiswork continues the research started in [2,6]. In this paperwe present a rigorous theory,
estimate the complexity and prove new results regarding the accuracy of the approximations.
We also perform a deep experimental study of the proposed approach on a set of new examples
including workspace assessment of the real-life planar parallel robot.

In Sect. 2 we formulate the general method to solve System (1) based on the nonuniform
covering techniques [3,5], and consider itsmain properties. In Sect. 3wepropose an algorithm
to solve the system, discuss its properties and complexity. In Sects. 4 and 5 two different
ways of estimating the constraints in (1) are considered. The first method is based on a global
optimization technique and the second one relies on Lipschitzian over- and underestimations.
Numerical results are reported in Sect. 6, where we consider a model example and a practical
application of the proposed approach. Section 7 concludes the paper.

2 Outline of the proposed approach

First notice that the system (1) is equivalent to the following one:{
φ(x) ≤ 0,

x ∈ P,
(2)

where φ(x) = max j=1,...,n g j (x) is a convolution of constraints and P = {x ∈ R
n : ai ≤

xi ≤ bi , i ∈ 1, n} is an n-dimensional bounding box. The goal is to find X with some
predefined accuracy.

Our method for approximating the solution set of (2) exploits the idea of the non-uniform
covering approach adopted for global optimization [3,5]. The set of boxes {Pi }, i = 1, k is
called a coverage if

P = ∪i∈1,k Pi , (3)

and each box Pi , i ∈ 1, k satisfies one of the following statements:

max
x∈Pi

φ(x) < 0, (4)

min
x∈Pi

φ(x) > 0, (5)

neither (5) nor (4) holds and d (Pi ) ≤ δ, (6)

where d(Pi ) = sup{‖x1 − x2‖, x1, x2 ∈ Pi } is the diameter of the box and δ > 0 is the
accuracy of the approximation.

From the formulations above we can infer the following

Proposition 1 A box Q ⊆ P is a subset of X iff statement (4) holds for this box. A box
Q ⊆ P has no common points with X iff statement (5) holds for this box.

Let I ⊆ 1, k be the index set of all boxes from the coverage satisfying (4), QI = ∪i∈I Pi ,
E ⊆ 1, k be the index set of all boxes satisfying (5), QE = ∪i∈E Pi and B ⊆ 1, k be the
index set of all boxes satisfying (6), QB = ∪i∈M Pi .

Proposition 2 It holds that

QI ⊆ X ⊆ QI ∪ QB (7)
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Proof The first part of the proposition: QI ⊆ X is true due to statement (4) for all boxes
in QI . The second part follows from two obvious observations: QI ∪ QB ∪ QE = P and
(according to Proposition 1) QE ∩ X = ∅. ��
Definition 1 The set of points x of Rn such that every neighborhood of x contains at least
one point of X and at least one point not of X is called a boundary of a set X and is denoted
as ∂X .

Definition 2 A set X defined by (1) is regular, if its boundary is the set of all x such that
φ(x) = 0.

This definition implies that a regular set is completely defined by the inequality φ(x) ≤ 0
and the box P encloses this set.

Proposition 3 For a boundary ∂X of a regular set X it holds that ∂X ⊆ QB.

Proof Suppose it is not true, i.e. there is a point x ∈ ∂X , which is not in QB , therefore
x ∈ QI or x ∈ QE . Considering (4) and (5), we can conclude that φ(x) 
= 0. On the other
hand, for any point x ∈ ∂X it holds that φ(x) = 0, which contradicts with our previous
conclusion, and as a consequence with the initial guess. ��
Proposition 4 If X is a regular set then every box satisfying equation (6) contains at least
one point of the boundary ∂X.

Proof Let Q be a box satisfying (6). Therefore properties (4), (5) do not hold for Q. Thus
there exist two points x, y ∈ Q such that φ(x) ≥ 0 and φ(y) ≤ 0. Since the function φ is the
continuous one the function ψ(t) = φ(x + t (y − x)), t ∈ R is also continuous. Obviously
ψ(0) = φ(x) ≥ 0, ψ(1) = φ(y) ≤ 0. According to the mean value theorem there is a point
t̂ ∈ [0, 1] such that ψ(t̂) = 0. Thus φ(ẑ) = 0, where ẑ = x + t̂(y − x). Taking into account
that Q is convex and ẑ lies on a segment [x, y] we conclude that ẑ ∈ Q. Since the set X is
regular, ẑ is a point on its boundary. ��
Definition 3 A δ-neighborhood of a set A ⊆ R

n is a set B(A, δ) = ∪a∈AB(a, δ), where
B(a, δ) = {x ∈ R

n : ‖x − a‖ ≤ δ} is a δ-neighborhood of a ∈ R
n .

Definition 4 Let X−δ = X\B(∂X, δ) be the subset of X obtained by excluding the boundary
of X with its δ-neighborhood and X+δ = X ∪ B(∂X, δ) be the union of X and its δ-
neighborhood.

Corollary 1 For every regular set X it holds that

QB ⊆ B(∂X, δ). (8)

Proof Let Pi ⊆ QB , i ∈ B be a box from coverage (3). The Proposition 4 states that there
is a point x ∈ Pi ∩ ∂X . Since d(Pi ) ≤ δ we obtain Pi ⊆ B(∂X, δ). ��
Theorem 1 For every regular set X it holds that

X−δ ⊆ QI ⊆ X ⊆ QI ∪ QB ⊆ X+δ. (9)

Proof Applying Corollary 1, we can conclude that the following two parts of Theorem 1 are
true: X−δ ⊆ QI and QI ∪ QB ⊆ X+δ . This fact and Proposition 2 yield the desired result.

��
FromTheorem1 it follows that ifwe have constructed a coverage {Pi } satisfying properties

(4)–(6) then sets QI and QI ∪ QB serve as internal and external δ-approximations of the set
X respectively. In Sect. 3 we describe the algorithm to construct a coverage.
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3 An algorithm for approximating the solution set of a system of nonlinear
inequalities

In this section we propose an algorithm for numerical approximation of a solution set for
System (1) based on the approach described in Sect. 2. The idea is simple: we partition
the initial box into smaller boxes until at least one of the properties (4)–(6) fulfills. The
partitioning is done by the longest side of a box.

The Covering Algorithm depicted (see Algorithm 1) works as follows. On the initial step
two lists of boxes Lmain and Ltemp are initialized. The former is initialized with P and is used
on every iteration of the the algorithm as the main storage for boxes to be analyzed. The latter
is a temporal storage for boxes obtained by splitting ones from Lmain . The diameter of the
initial box P is saved to δc. Three empty lists L I , LE and LB for storing boxes contributing
to the sets QI , QE and QB respectively are created.

On each iteration of thewhile loop we traverse and analyze all boxes of the main list Lmain

in the for loop. On i-th iteration of the for loop a box Pi is processed. If inequality (5) holds
for Pi , the box is added to the list of external boxes: LE . If inequality (4) holds, the box is
added to the list of internal ones: L I . If neither (4) nor (5) hold, the box is partitioned into
two equal boxes Pl

q and Pr
q by bisecting its longest edge. The diameter of the box Pl

q (same
as the diameter of Pr

q ) is calculated and δc value is updated. The algorithm stops when δc is
less then δ. After termination the list Lmain is equal to the list LB by construction.

The partitioning of boxes is done by bisecting its longest edge thereby ensuring a sufficient
reduction of its diameter.

Proposition 5 Let boxes B ′ and B ′′ are obtained from the box B by bisecting its longest

edge. Then d(B ′) = d(B ′′) ≤ αd(B), where α =
√
1 − 3

4n .

Proof The diameter of a box B is computed as follows:

d(B) =
√

(b1 − a1)2 + · · · + (bn − an)2.

Then the diameter of the box B ′ obtained by bisecting the longest edge q of the box B is

d(B ′) =
√

(b1 − a1)2 + · · · + (bq − aq)2

4
+ · · · + (bn − an)2.

Then, d(B ′)2 = d(B)2 − 3
4 (bq − aq)2.

Since |bq − aq | ≥ |bi − ai | for any i 
= q , we can write that d(B)2 ≤ n(bq − aq)2, which
gives us the following inequality for d(B ′):

d(B ′) =
√
d(B)2 − 3

4
(bq − aq)2 ≤

√
d(B)2 − 3

4

d(B)2

n
= d(B)

√
1 − 3

4n
,

which proves the proposition. ��
Proposition 5 can be used to estimate the maximal number of steps of the algorithm. Let’s

define the complexity of the Covering Algorithm as the total number of iterations.

Theorem 2 Let d be a diameter of the initial box and δ be and accuracy of the approximation.
Then, the complexity of the Covering Algorithm is less then(

δ

d

)2/ log2(1− 3
4n )

, (10)
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Algorithm 1: The Covering Algorithm. The pseudocode for the algorithm of getting a
solution set for the problem (1). It returns the list of boxes: L I , LE , and LB that storing
boxes from QI , QE and QB respectively.
Input: P, δ

Output: L I , LE , LB
Lmain ← P;
Ltemp := ∅;
δc := d(P);
L I := ∅; LE := ∅; LB := ∅;
while δc ≥ δ do

foreach Pi ∈ Lmain do
if minx∈Pi φ(x) > 0 then

LE ← Pi ;
continue with another node from Lmain ;

end
if maxx∈Pq φ(x) < 0 then

L I ← Pi ;
continue with another node from Lmain ;

end
Split Pq into two: Pl

i ? Pr
i

Ltemp ← Pl
i ;

Ltemp ← Pr
i ;

δc := d(Pl
i );

end
Lmain := Ltemp ;
Ltemp := ∅;

end
LB := Lmain
return L I , LE , LB

Proof Applying Proposition 5, we obtain the following inequality for the k-th iteration of
the while loop in Algorithm 1:

αk−1d ≥ δ, (11)

where α =
√
1 − 3

4n
It can be rewritten as follows:

k ≤ logα

(
δ

d

)
+ 1 = log2

(
δ

d

)
/ log2 α + 1 (12)

Starting from 1 the number of boxes in the list Lmain is (in the worst case) doubled on
each iteration of the while loop. Since the number of iterations of the for loop is equal to the
size of the list Lmain , the upper bound of the algorithm complexity S can be evaluated as
follows:

S ≤ 2k−1 ≤
(

δ

d

)1/ log2 α

=
(

δ

d

)2/ log2(1− 3
4n )

, (13)

which gives us a desired result. ��
After correct termination of the Covering Algorithm, we get two lists of boxes L I , LB

comprising boxes of the sets QI and QB respectively. Therefore, we obtain inner and outer
approximations of the set X in the sense of the Theorem 1.
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Although the approach described above can be used in practice, it works only in simple
cases when we can compute exact maximum and minimum of the function φ(x) for a box.
If it is problematic, we have to use more elaborate approaches that we develop in the next
sections.

4 The solution set approximation using global optimization techniques

In this section we consider the case when extrema of the function φ(x) are found using global
optimization techniques. To provide correctness we obviously need deterministic methods
that guarantee the precision of the obtained solutions. As a rule such algorithms yield a
solution xε of the problem maxx∈Pi φ(x)(minx∈Pi φ(x)) with a predefined accuracy ε:

|φ(xε) − φ(x∗)| ≤ ε, ε ≥ 0, (14)

where xε ∈ Pi denotes a point obtained using the global optimization techniques, and x∗
denotes a point where a global extremum of the function φ is achieved.

Based on the Eq. (14), we can rewrite Eqs. (4) and (5) as follows:

max
x∈Pi

εφ(x) < −ε, (15)

min
x∈Pi

εφ(x) > ε, (16)

neither (15) nor (16) holds and d (Pi ) ≤ δ, (17)

where maxx∈Pi
εφ(x) and minx∈Pi

εφ(x) are extrema of the function φ(x) found by a global
optimization method that satisfies (14) for a box Pi .

The coverage (3) as well as the sets QI , QE , and QB are redefined according to (15),
(16), (17).

Propositions 2 and 3 hold for this case, while Proposition 4 and Theorem 1 do not. We
can modify them as follows.

Definition 5 The ε-boundary of X is ∂εX = {x ∈ R
n : −ε ≤ φ(x) ≤ ε}.

Proposition 6 If X is a regular set then every box satisfying (17) contains at least one point
from ∂εX.

Proof Let Pi be a box satisfying (17). Therefore (15) doesn’t hold i.e. maxx∈Pi
εφ(x) ≥ −ε.

Thus there exists p ∈ Pi such that φ(p) ≥ −ε. If φ(p) ≤ ε then p ∈ Pi ∩ ∂εX and the
proposition is proved. Inequality (16) is also false. Thus minε

x∈Pi
φ(x) ≤ ε and there exists

q ∈ Pi such that φ(q) ≤ ε. If φ(q) ≥ −ε then φ(q) ∈ Pi ∩ ∂εX and the proposition is
proved. The remaining case φ(p) > ε > 0 > −ε > φ(q) is considered in a way similar to
the proof of Proposition 4. In that case we construct z ∈ Pi such that φ(z) = 0. Obviously
z ∈ Pi ∩ ∂εX . ��

Since the diameter of boxes in QB is less than δ, the Proposition 6 yields the following

Corollary 2 QB is a subset of B(∂εX, δ).

Define sets X−δ
ε and X+δ

ε as follows: X−δ
ε = X \ B(∂εX, δ), X+δ

ε = X ∪ B(∂εX, δ).
The following theorem is the direct consequence of the Corollary 2.

123



136 J Glob Optim (2018) 71:129–145

Theorem 3 For a regular set X it holds that

X−δ
ε ⊆ QI ⊆ X ⊆ QI ∪ QB ⊆ X+δ

ε . (18)

The Covering Algorithm can be rewritten to be used with global optimization techniques
with a predefined accuracy ε by replacing inequalities (4), (5) with (15), (16) respectively.
The other parts of the algorithm remain the same.

5 The solution set approximation using Lipschitz minorants and
majorants

The drawback of the approach described in the previous section is that it relies on computa-
tionally intensive global optimization procedures. To cope with this issue, here we are going
to approximate the optima of φ(x) by using Lipschitzian over- and underestimations.

Let functions g j : Rn → R, j ∈ 1,m in (1) satisfy the Lipschitz continuity property:

|g j (x) − g j (y)| ≤ L j‖x − y‖, j ∈ 1,m, (19)

where P = [a, b] = {x : ai ≤ xi ≤ bi , i ∈ 1, n} is a box in R
n , the diameter of

which is d(P) = ‖b − a‖. Obviously function φ(x) is Lipschitzian with the constant
L = max j∈1,m L j .

The Lipschitz continuity of the function φ can be used to get underestimation μi (x) and
overestimation Mi (x) for a box Pi = [

a(i), b(i)
]
:

μi (x) = φ
(
c(i)

)
− L

∥∥∥x − c(i)
∥∥∥ , Mi (x) = φ

(
c(i)

)
+ L

∥∥∥x − c(i)
∥∥∥ , (20)

where c(i) = 1
2

(
a(i) + b(i)

)
is the center of the box Pi .

Applying the property of this approximations: μi (x) ≤ φ(x) ≤ Mi (x), x ∈ Pi , we can
modify (4) and (5) as follows.

For any box from Coverage (3) one of the following properties hold:

max
x∈Pi

Mi (x) < 0, (21)

min
x∈Pi

μi (x) > 0, (22)

neither (21) or (22) holds and d (Pi ) ≤ δ. (23)

In this case, extrema of the minorant and the majorant can be found analytically:

max
x∈Pi

Mi (x) = φ
(
c(i)

)
+ L d(Pi )/2,

min
x∈Pi

μi (x) = φ
(
c(i)

)
− L d(Pi )/2,

(24)

This fact enables checking conditions (21), (22)without using global optimization techniques.
The coverage (3) as well as the sets QI , QE , and QB are redefined according to (21), (22),

(23). While Propositions 2 and 3 remains intact for the case under consideration, Theorem 1
must be revised.

Lemma 1 If (23) holds for a box Pi , then its center c(i) ∈ ∂εX where ε = L δ
2 .
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Proof Since (23) holds for Pi , φ
(
c(i)

)−ε ≤ 0 ≤ φ
(
c(i)

)+ε. Therefore,−ε ≤ φ
(
c(i)

) ≤ ε

which proves the lemma. ��
Corollary 3 A set QB is the subset of B(∂εX, δ) where ε = L δ

2 .

Based on this additional information,we can formulate the following analog of Theorem1.

Theorem 4 It holds that

X−δ
ε ⊆ QI ⊆ X ⊆ QI ∪ QB ⊆ X+δ

ε , (25)

where ε = δL/2.

Proof Applying the Corollary 3, we can conclude that the following statements are true:
X−δ

ε ⊆ QI and QI ∪ QB ⊆ X+δ
ε . Considering this fact and Proposition 2 we can get the

desired result. ��
The Covering Algorithm can be rewritten to be used with the Lipschitzian under- and

overestimations by applying Eq. (24) to solve analytically the optimization problem in (4)
and (5). The other parts of the algorithm remain the same.

6 Numerical experiments

In this section we apply the approach proposed in Sect. 2 to different systems of inequalities.
We implemented and compared two algorithms based on global optimization and extrema
approximation techniques discussed in Sect. 4 and Sect. 5 respectively. We used Lipschitzian
optimization techniques proposed in [3,5] as a global optimizer needed for the algorithm
described in Sect. 4.

All experiments were run on a laptop with a 2.2 GHz Intel Core i7 processor and 16 GB of
RAM, running MacOS X (10.10.5). We made the developed software written in Python pro-
gramming language publicly available from the following GitHub repository https://github.
com/andreiturkin/JGO2018.SolSetApp.git.

6.1 Example 1

Consider the problem (1) with the following constraint functions [10,12,28]:⎧⎪⎪⎨
⎪⎪⎩
g1(x1, x2) = x21 + x22 − 1,

g2(x1, x2) = (0.999)2 − x21 − x22 ,

−1.5 ≤ x1 ≤ 1.5,−1.5 ≤ x2 ≤ 1.5.

(26)

Elaborate approaches to estimating Lipschitz constant’s value are considered in [26,27].
Though such approaches proved their high efficiency for practical (especially black-box)
problems they do not guarantee the validity of the estimated Lipschitz constant. To provide
the precision guarantee of the constructed approximations of the solution set X weneed a valid
Lipschitz constant. Here we can take an advantage of the available analytic representation
of constraint functions gi (x), i = 1, . . . ,m. For a differentiable function f (x) any number
above maxx∈P ‖∇ f (x)‖ is a valid Lipschitz constant for f (x) [23]. Such upper bound can
be obtained using interval analysis [11] or other approximation techniques.
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Fig. 1 The approximations are calculated for δ = 0.06 and ε = δL/2 by using global optimization (a), the
extrema approximation (24) with the L value determined for the initial rectangle (b), and the extrema approx-
imation with the L value calculated for every box of the coverage (3) (c). a The approximation is calculated
by using global optimization. b The approximation is calculated with the “global” L value determined for the
initial box. c The approximation is calculated by using locally recalculated values of Lipschitz constants

In this example, the Lipschitz constant can be found analytically as a maximum value of
the gradient norm by using the following equation:

L = 2
(
max(|a1|, |b1|)2 + max(|a2|, |b2|)2

)1/2
. (27)

Figure 1 shows the results obtained for δ = 0.06. The blue color marks the internal
approximation of the solution set QI . Rectangles with red and green boundaries belong to
the sets QB and QE respectively. Figure 1a depicts the approximation obtained by applying
the global optimization technique proposed in [3,5] with ε = δL/2. The approximation
obtained by applying under- and overestimations (20) is presented in Fig. 1b. In both cases
we used global bounds for Lipschitz constants L calculated according to (27) for the initial
box. The results for locally recalculated Lipschitz constants are presented at Fig. 1c. In the
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Table 1 The relationship between the δ value and the run-time of the Algorithm 1 for different optimization
techniques used to find a minimum value for the function φ(x1, x2)

δ Global optimization Global L∗ LocalL∗∗
Number of
iterations

Time (s) Number of
iterations

Time (s) Number of
iterations

Time (s)

0.08 1159 0.2675 1983 0.0716 1015 0.0370

0.06 1671 0.3975 2831 0.0974 1391 0.0600

0.035 2215 0.6418 4087 0.1491 1959 0.0790

0.03 3463 0.8398 5735 0.2101 2703 0.1132

0.018 4287 1.2530 8343 0.2867 3879 0.1457

0.015 6803 1.7493 11,655 0.4038 5471 0.2311

0.01 9383 2.6085 16,911 0.5856 7975 0.3330

0.001 152,959 39.0388 231,447 8.6138 132,063 4.9824

∗ The Lipschitz constant is calculated only for the initial box P by using (27)
∗∗ The Lipschitz constant is calculated for every box Pi in (3)

latter case the Lipschitz constants were recomputed according to (27) for every processing
box.

As it is shown in Fig. 1a, b, if a global optimization technique with ε = δL/2 is used to
find a minimum for a box, we get a smaller number of rectangles in QE . On the other hand
(see Table 1), the run-time of the Algorithm 1 with the global optimization technique above
is longer than the one with Lipschitzian under- and overestimations. This fact is caused by
time-consuming global optimization techniques invoked at every step of the method.

Figure 1 and Table 1 demonstrate that the use of locally calculated Lipschitz constants
improves the quality of the approximation and reduces the running time approximately twice.
Thus the best performance is obtained when a combination of Lipschitzian under- and over-
estimations combined with the local estimation of Lipschitz constants is used. ThusWe focus
on this combination in the rest of the paper.

The solution set of the problem (26) is a very thin ring. To capture its internity we need to
select a small δ = 10−4 or less. The Fig. 2 shows the result of computations. The left part of
Fig. 2 is the whole solution set of (26), in Fig. 2b we plot a zoomed in portion of the solution
set shown in blue.

6.2 Example 2

The following example shows an ability of the proposed approach to approximate the
solution set when constraints have a more complex structure:⎧⎪⎪⎨

⎪⎪⎩
g1(x1, x2) = x1 sin(x1) + 0.1x21 + 1,

g2(x1, x2) = cos(x2) + 0.1x22 ,

π ≤ x1 ≤ 2π, 1 ≤ x2 ≤ π + 1.

(28)

We implemented two approaches for this example (Table 2). The first one relies on valid
analytic upper bounds for the Lipschitz constant. The second uses the heuristically estimated
Lipschitz constants. The valid Lipschitz constant can be found by using interval arithmetic
from the following equation:
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Fig. 2 The approximations are calculated for δ = 0.0001 and ε = δL/2. a The whole ring of the solution
set. b A zoomed in portion of the solution set near the point (0.9995, 0)

Table 2 The table presents the relationship between the δ value and the run-time of the Algorithm 1 for two
approaches to Lipschitz constant calculation

δ Analytically calculated L∗ Numerically calculated L∗∗
Number of iterations Time Number of iterations Time (s)

0.25 557 3.9250 513 2.2362

0.1 1989 15.1308 1947 7.4649

0.05 3953 26.7782 3963 15.4814

0.03 5393 37.3575 5571 22.7692

0.018 7677 55.5041 8179 31.5296

0.015 10,723 72.7264 11,141 42.9232

0.01 15,407 104.1031 15,543 60.0644

0.005 30,657 206.6940 30,579 120.1384

∗ The Lipschitz constant is calculated for every box by using analytical representation and interval arithmetic
∗∗ The Lipschitz constant is calculated for every box by using second order accurate central differences to
get numerically norm of the function gradient

L = max
(x1,x2)∈Pi

(
| sin x1 + x1 cos x1 + 0.2x1|, | − sin x2 + 0.2x2|

)
. (29)

The resulting approximation is depicted in Fig. 3a.
Figure 3b demonstrates the results obtained with the heuristically estimated Lipschitz

constants. The goal of this experiment is to demonstrate the ability of the proposed approach
to cope with “black-box” problems, e.g. when the analytic representation of the constraint
functions is not available or too complex to handle.

We use a very basic approach to Lipschitz constant estimation based on the following
obvious observation [25]:

L(Pi ) ≥ max
i=1,...,N

max
j=i+1,...,N

| f (xi ) − f (x j )|
‖xi − x j‖ , (30)
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Fig. 3 The approximations are calculated for δ = 0.01 and the L values that are calculated by using either
(29) (a) or (31) (b)

where L(Pi ) is a valid Lipschitz constant for the box Pi and x1, . . . , xN ∈ Pi are sample
points. Based on the inequality (30) we derive the following estimation of the Lipschitz
constant:

L = α max
i=1,...,N

max
j=i+1,...,N

| f (xi ) − f (x j )|
‖xi − x j‖ , (31)

where α accounts the anticipated difference between left and right parts of the inequality
(30). In this experiment we used N = 10 and α = 1.2.

Aswe can see fromcomparison of Fig. 3a, b the heuristic estimations ofLipschitz constants
give the approximation sufficiently close to one obtained with analytic estimations. This
observation opens broad opportunities for applying the proposed method to “black-box”
problems. Notice that more sophisticated techniques for estimating Lipschitz constants can
be employed [24,27].

6.3 Example 3

In this example the proposed approach was applied to solve a practical problem from the field
of robotics: the workspace assessment [20]. This problem consists in describing the set of all
possible states of the robot’s end-effector (i.e. working tool). This problem can formulated
as a system of nonlinear inequalities, which has a general form (1).

Consider the planar robot described in [9]. This robot presented in Fig. 4 has linear actua-
tors 1, 2, 3 that are used to change lengths of links (A1B1, A2B2, and A3B3), correspondingly,
thereby moving the triangular platform with its center Z in a desired direction.

The workspace assessment problem can be formulated as follows: it is necessary to find
an approximation of the solution set X ⊂ R

2 for system (1), where functions g j (·), j ∈ 1, 6
are defined as follows:

g2u−1(x1, x2) = (x1 − pu(ξ))2 + (x2 − qu(ξ))2 − (lmax
u )2,

g2u(x1, x2) = (lmin
u )2 − (x1 − pu(ξ))2 − (x2 − qu(ξ))2,

u = 1, 2, 3

(32)
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Fig. 4 The three degree of
freedom planar parallel
manipulator

Table 3 The table of
parameters [9]

Parameter u=1 u=2 u=3

xu1 −15 15 0

xu2 5
√
3 −5

√
3 10

√
3

x̂u1 −5 5 0

x̂u2 −5
√
3/3 −5

√
3/3 10

√
3/3

lmin
u 12 12 12

lmax
u 27 27 27

where x1, x2 are the coordinates of the platform center, lmin
u and lmax

u denote the intervals for
possible lengths of Au Bu : ‖Au Bu‖ ∈ [lmin

u , lmax
u ];

pu(ξ) = xu1 − x̂u1 cos ξ + x̂u2 sin ξ,

qu(ξ) = xu2 − x̂u1 sin ξ − x̂u2 cos ξ,
(33)

where xu1 and xu2 are coordinates of points Au in the frame α, and x̂u1 and x̂u2 are coordinates
of points Bu in the moving frame β. We restrict our consideration to the constant orientation
workspaces, i.e. when the angle ξ is fixed at some value. Therefore, in this case, the values of
pu(ξ), qu(ξ) are also constants. The values of parameters for this example are summarized
in Table 3. The bounding box was chosen sufficiently large to reliably capture the workspace:
−20 ≤ x1 ≤ 20,−20 ≤ x2 ≤ 20.

Applying the same approach as in the previous example to calculate the Lipschitz constant
for φ(x1, x2) and some rectangle Pi obtain:

L = 2max
u

(
max

l∈{a1,b1}
(|l − pu(ξ)|)2 + max

l∈{a2,b2}
(|l − qu(ξ)|)2

)1/2
(34)

Figure 5 depicts four coverages with different values of δ that were obtained by using Lip-
schitzian minorants and majorants with the L value recalculated locally for every processed
box. In Fig. 5 we show the coverage obtained for δ = 0.1 and the following ξ values: ξ1 = 50
(Fig. 5a); ξ2 = 80 (Fig. 5b); ξ3 = 120 (Fig. 5c); and ξ = 140 (Fig. 5d). The workspace is the
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Fig. 5 The approximations are calculated for δ = 0.1 and ξ ∈ {50, 80, 120, 140}. a ξ1 = 50. b ξ2 = 80. c
ξ3 = 120. d ξ4 = 140

Table 4 The relationship
between the δ value and the
run-time for the Algorithm 1
applied to the problem of
workspace assessment, ξ = 50◦

Locally calculated L∗
δ value Number of iterations Execution time

0.1 17,509 1.6067

0.07 25,335 2.4502

0.05 35,267 3.1663

0.04 50,919 4.5569

0.025 70,875 6.2210

0.02 102,141 8.8615

0.012 141,881 12.5049

0.009 204,611 20.0849

∗ The Lipschitz constants are
calculated for every box Pi ,
i ∈ 1, k
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intersection of three rings with inner and outer radii equal to lmin
u and lmax

u correspondingly,
which we plot using dashed lines. The center of every uth ring is moved from the origin in
horizontal and vertical direction by pu(ξ) and qu(ξ) correspondingly. For the experiments
we use the approach with Lipschitzian bounding and locally computed Lipschitz constants.

Table 4 shows the relationship between the δ value and the execution time of the Algo-
rithm 1. As expected the smaller δ we use, the larger number of boxes have to be processed
and the better approximation we get.

7 Conclusions

In this paper we proposed an approach to solving systems of nonlinear inequalities with a
predefined accuracy based on the nonuniform covering concept. We compared theoretically
and experimentally twoways of bounding the constraints on a box: (1) the global optimization
with guaranteed accuracy and (2) the extrema approximation based on Lipschitzian bounds.
Experimental evaluation suggested that the latter outperforms the former. To demonstrate the
practical value of our approach we applied it to the workspace assessment of a 3-DOF planar
parallel robot. The obtained results agree with the theoretical expectations.
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