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Abstract—The article considers the problem of providing the 

necessary geometric parameters of the workspace of a flat robot  

with 3 degrees of freedom. The influence of the geometric 

parameters of the robot mechanism configuration (drive 

mechanisms rod lengths and working platform parameters) as 

well as the working platform angle of rotation on the dimensions 

of the workspace was investigated. Special provisions (singularity 

zones) of the mechanism should be excluded from the robot 

workspace. The mechanism under investigation has singularities 

of the second type. Increasing angle φ that decreases the size of 

the workspace, but increases radius θ of the circle, on which the 

points of singularity are located, is shown. Thus, it is necessary to 

limit the swing angle range and expand the variation range of the 

lengths of the rods’ change to ensure the necessary size of the 

workspace mechanism. For the given dimensions of the 

workspace (based on the requirements of the technological 

process), the task of determining the geometric parameters of the 

robot mechanism configuration is solved. Mathematical modeling 

is performed. The results of computational experiments are 

presented. 

Keywords— tripod robot,. robot mechanism configuration, 
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I. INTRODUCTION 

The main problem with the workspace representation of 

parallel robots is that the limitations on the degrees of freedom 

are all usually coupled. Hence for robots having more than 3 

d.o.f., there will be no possible graphical illustration of the 

robot workspace. This is not usually the case with serial 

robots. For example, the workspace of a 6 d.o.f. serial robot 

with a concurrent axis wrist may be represented by the 3D 

volume that may be reached by the center of the wrist – this 

illustrates the translations, and by the surface that may be 

reached by the extremity of the end-effector (which illustrates 

2 degrees of freedom in rotation). The 3D volume depends 

only on the motion capability of the first three actuated joints, 

while the orientation uses only the last three joints. A 

graphical representation of the workspace of parallel robots 

will be possible only for 3 d.o.f robots. For robots with d.o.f. n 

> 3, workspace representation will be possible only if one 

fixes n – 3 pose parameters. According to fixed types of 

parameters or to the constraint that are imposed on the 

parameter, let us obtain different types of workspace. 

The known approach to workspace calculation was 

suggested by Jo [1]. Taking into consideration the constraints 

on the joint coordinates, he transformed the inequalities that 

are imposed by these constraints into equalities by introducing 

extra variables. Then he considered the generalized 

coordinates (vector X), the joint coordinates (vector Θ) and 

the variables (vector w) that are introduced by the 

transformation of the inequalities into equalities. 

Let q be the vector that is constituted of all of these 

unknowns. The structure of the mechanism leads to constraint 

equations on the components of q which may be written in an 

implicit form as Φ(q) = 0. Let JΦ be the jacobian of the 

system, i.e. the matrix: 

(( , , ))
Ф Ф Ф Ф

Jф
q X w

   
 
   

 

The workspace boundary is obtained as the set of vectors 

q, such that for given X, there will not be a unique set of 

vectors Θ,w. In other words, the rank of matrix 

(( )),
Ф Ф

w

 

   
is lower than its dimension. A numerical procedure is then 

used to calculate the pose of the platform where this condition 

is satisfied. However, let us note that Jo illustrated this 

approach only for the simple case of the calculation of the 

constant orientation workspace of a 6−UPS robot. The 

introduction of other constraints limiting the workspace would 
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lead to a jacobian, which is so large that to render the 

procedure is quite difficult to manage. Adkins [2] and Haugh 

[3] succeeded in finding a point on the boundary and using a 

numerical continuation method to follow the boundary. 

Although this approach is general, Adkins and Haugh restrict 

their calculation for a constant orientation workspace, as the 

general problem will be very complicated. But these authors 

were able to predict the singularity barriers that may split the 

workspace into different aspects (an aspect is a maximal 

singularity-free component of the workspace). Instead of using 

a continuation method to follow the boundary, some authors 

have proposed formulating that point as a constrained 

optimization problem [4]. 

The purpose of the geometrical method is to determine 

geometrically the boundary of the robot workspace. The 

principle is to deduce geometrical object Wl from the 

limitations on each leg that describes all the possible locations 

of X, which satisfy the leg constraints. One such object is 

obtained for each leg and the robot workspace is constituted of 

the intersection of all Wl. 

In some cases such as the Delta, calculation of the 

workspace may be done directly by CAD [5,6] since this 

calculation is equivalent to the intersection of simple 3D 

volumes.  

This approach is usually restricted to 3D workspace and is 

able to deal mostly with the constraints on the joint 

coordinates, although we will see that joint limits and 

interference constraints may be taken into account in some 

cases. 

The main interest of the geometrical approach is that it is 

usually very fast and accurate, and provides a minimal 

representation of the workspace which may be used to 

calculate efficiently some characteristics of the workspace, 

such as its volume. Its drawbacks are that it must be tailored to 

the considered robot, it may be difficult to take into account 

all constraints, and the minimal representation of the 

workspace may not be the most appropriate for such tasks as 

motion planning. A possible simplified approach is to compute 

only slices of the workspace, and to approximate the section of 

Wl by polygons. This approach requires a good computational 

geometry library that is able to execute Boolean operations: 

intersection, union, difference on polygons with arbitrarily 

large number of edges. 

Numerous papers, dealing with workspace calculation, use 

methods based on the discretization of the pose parameters in 

order to determine the workspace boundary. In this 

discretization approach, the workspace is covered by a regular 

grid, either cartesian or polar, of nodes. Each node is then 

tested to see whether it belongs to the workspace. The 

boundary of the workspace is constituted of the set of valid 

nodes, where at least one close neighbor does not belong to 

the workspace. The advantage of this method is that it allows 

one to take into account all constraints. But this approach has 

many drawbacks: 

− the accuracy of the boundary depends on the sampling 

step that is used to create the grid, the computation time grows 

exponentially with the sampling step so that there is a limit on 

the accuracy. 

− problems occur when the workspace possesses voids. 

− the boundary representation may involve a large number 

of nodes. 

− the boundary is used for different operations such as 

determination of the workspace volume, inclusion of a 

trajectory in the workspace, etc. When performed on a 

boundary represented by a discrete set of poses, these 

operations are computer intensive. To avoid this drawback, 

Chablat [7] proposed storing the workspace representation as 

an octree structure that allows faster motion planning and 

volume calculation. Still, obtaining the structure is computer 

and memory intensive. 

II. DETERMINATION OF THE ROBOT-TRIPOD 

GEOMETRIC PARAMETERS   

Let us consider the flat mechanism of the tripod robot in 

the form of a 3-RPR mechanism [8], moving the fixed tripod 

platform along the x and y axes and rotating around the z axis 

(Fig.1). 

 
Fig. 1. Flat 3-RPR mechanism scheme 

It should be noted that when the tripod moves, some 

parasitic movement of its movable platform along the x and y 

axes occurs. However, this movement can be determined by 

the current lengths of the drive links (or even with specified 

output coordinates) and easily compensated by the 

corresponding movement of the plane mechanism. 

One of the most important subtasks of controlling the 

parallel structure mechanism is determination of the feedback 

signal by the position of the moving platform by solving the 

direct kinematic problem of the mechanism. 

The method for solving the tripod direct kinematic 

problem for the purpose of controlling this mechanism was 

proposed by authors in [9]. It is shown that this task can be 

successfully solved on the basis of neural network 

technologies. 

Thus, it is necessary to organize the solution of the direct 

kinematic problem for a flat 3-RPR mechanism for controlling 

the proposed composite mechanism with 6 degrees of 

freedom. Using the formula for solving the inverse problem of 

positions [10]:  
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2 2
3, , 3, ,( cos( ) ) ( sin( ) ) ,i i i A i i i A iL x l x y l y          

 
where (x, y, φ) – output mechanism coordinates, γi – angle 

(fig. 1), which determines the output link geometry, (xAi, yAi) – 

coordinates of the point Ai hinged attachment of the drive link 

to a stationary base, l3,i – distance from point Ci of hinged 

attachment of the drive link to the mobile platform to the point 

determining the position of the output link of the mechanism, 

Li – length of the i-th drive link. 

In the case of constructing a flat 3-RPR mechanism in 

accordance with the classical scheme of the location of 

attachment points Ai and Ci at the vertices of equilateral 

triangles (Fig. 1), the lengths of the drive links can be 

determined on the basis of the following relationships: 

2 2
1

7 7 7 7
( cos( ) cos ) ( sin( ) sin ) ,

6 6 6 6
L x r R y r R

   
        

 

2

2
2 1/2

11 11 11
(( cos( ) cos ) ( sin( )

6 6 6

11
sin ) ) ,

6

x r R y r

L

R

  
 



      





2 2
3 ( cos( ) cos ) ( sin( ) sin ) ,

2 2 2 2
L x r R y r R

   
        

 where R and r – circles circumscribed about triangles A1A2A3 

and С1С2С3 radii, γ1 = 7π/6, γ2 = 11π/6, γ3 = π/2, which 

simplifies the expression for Li: 

2

1
2

3
( (sin 3 cos ) ) ( ( 3 sin

2 2 2

cos ) ) ,
2

r r
x R y

L
R

  



     



 

 

2

2
2

3
( (sin 3 cos ) ) ( ( 3 sin

2 2 2

cos ) ) ,
2

r r
x R y

L
R

  



     



 

 

2 2
3 ( sin ) ( cos ) ,L x r y r R     

 
The workspace of the mechanism is determined by the 

values of R, r and the range of the lengths of the drive links 

and can be determined using the equations given above. It is 

also necessary to exclude special provisions (points of 

singularity) of the mechanism from the working space. The 3-

RPR mechanism has singularities of the second type [8] for 

which det (JA) = 0: 

1 1 1

2 2 2

3 3 3

,A

F F F

x y

F F F
J

x y

F F F

x y







   
 
   

   
  

   
   
       

where 

3,2 2 2 cos( ),i
Ai i i

F
x x l

x
 


   

  

3,2 2 2 sin( ),i
Ai i i

F
y y l

y
 


   


 

3, 3, 3,

3,

2 ( sin( ))cos( ) 2 (

cos( ))sin( ),

i
i Ai i i i i

Ai i i i

F
l y y l l x

x l

   


   


      



   

 

which in the case under consideration means 

1 2 (sin 3 cos ) 3,
F

x r R
x

 


   
  

2 2 (sin 3 cos ) 3,
F

x r R
x

 


   
  

3 2 2 sin ,
F

x r
x




 
  

1 2 ( 3sin cos ) ,
F

y r R
y

 


   


 

2 2 ( 3sin cos ) ,
F

y r R
y

 


   


 

3 2 2 cos 2 ,
F

y r R
y




  


 

1 ((2 ( 3 sin cos ) )(sin 3 cos )
2

(2 (sin 3 cos ) 3)( 3 sin cos ))

((2 )(sin 3 cos ) (2 3)( 3 sin
2

cos )) ( ( 3 sin cos ) (sin 3 cos )

2 sin ),

F r
y r R

x r R

r
y R x R

r x y

R

   


   

  

    




     



     

     
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

 

2 ((2 ( 3 sin cos ) )(sin 3 cos )
2

(2 (sin 3 cos ) 3)( 3 sin cos ))

((2 )(sin 3 cos ) (2 3)( 3 sin
2

cos )) ( ( 3 sin cos ) (sin 3 cos )

2 sin ),

F r
y r R

x r R

r
y R x R

r x y

R

   


   

  

    




     



     

     

     



 

3 2 (( cos )sin ( sin )cos )

2 (( )sin cos ).

F
r y r R x r

r R y x

   


 


      



  
 

To define the working space and special positions of the 3-

RPR mechanism, let us set its geometric parameters: R = 100 

mm, r = 50 mm, L1,2,3[10 mm, 130 mm] and use the 

MatLAB package. The areas of possible changes in the linear 

output coordinates of the mechanism for different angles of 

the moving platform rotation are shown in Fig. 2. 
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Fig. 2. The range of admissible values x and y for φ = 1°, 10°, 20°, …, 50° 
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Fig. 2 shows that increasing angle φ decreases the size of 

the workspace, but increases radius θ of the circle on which 

the point of singularity is located. The dependence of radius 

on φ can be determined by the cosine theorem (Fig. 3.): 

 
Fig. 3.  Dependence of radius θ on R, r and φ 

2 2( ) 2 cos .R r Rr    
 

Minimum θ(φ) is reached when φ → 0: 

2 2

0
lim ( ) 2 cosR r Rr R r


  


    
 

It should be noted that when φ = 0°, all points of the plane 

are singular. This explains Fig. 4, which shows that three 

straight A1C1, A2C2 and A3C3 intersect in a single point - the 

homothetic center that takes point Ai at point Ci. The situation 

is similar at φ = 180°, but in this case segments A1C1, A2C2 

and A3C3 intersect, which makes rotation of the movable 

platform technically unrealizable. 

 
Fig. 4. The singular plane at φ = 0 

Thus is necessary to limit the swing angle range of 

0°<φ<180° and to increase it to acceptable level value 

(0, )
inf ( ) R r

 
 


   and expand the range of change L1,2,3 to 

ensure the necessary size of the workspace mechanism, which 

ensures consistency of Jacobian det sign det (JA). Reducing its 

lower limit leads to a size reduction of the "dead zones" that 

do not enter the workspace (white circles in Figure 2). An 

increase in the upper limit of the range allows increasing the 

size of the workspace for values of φ close to 180°.  

Let us note that angles above 120° for the mentioned above 

geometric parameters of the mechanism are unattainable. It is 

necessary to choose new parameters that provide the 

movement of the movable platform center within the circle 

with the center at the origin and radius of 60 mm for the 

angles of rotation from 1 ° to 179°. For example, a mechanism 

with the following geometric parameters: R = 100 mm, r = 25 

mm, L1,2,3[10 mm, 190 mm] has a workspace, shown in 

Figure 5. 

 
 

 
 
Fig. 5. Area of admissible values of x and y for mechanism with the selected 

parameters at φ = 1° and 179° 

III. CONCLUSIONS 

An attempt to repeat the computational experiments [9] 

aimed at constructing the neuronet model of the mechanism 

showed the applicability of this methodology to the 

organization of an automated solution of the direct kinematic 

problem with the purpose of determining the feedback signal 

from the moving platform position. The control of the 

mechanism is facilitated by the absence of singularity areas in 

its workspace. 
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