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Annotation. The paper proposes a method for dry separation of enrichment waste (tailings) of 
Kursk Magnetic Anomaly. A dry scheme for enrichment waste processing is suggested. The 
work suggests a design of the separator to fractionate the enrichment tailings of a metallurgical 
plant into quartz sand and iron-containing components to reduce the environmental impact. 
Using the regularities of the mass transfer of magnetic particles, an analytical expression for 
their extraction coefficient is derived. The application of the enrichment tailings as the 
precursor for building materials production is justified. The testing results of the fine-grain 
concrete with the samples produced by the developed installation are presented. 

1. Introduction. 
One of the most environmentally harmful industries is metallurgy. The separation of magnetite 
quartzites during mining and processing works of the Kursk Magnetic Anomaly is accompanied by the 
accumulation of enormous amounts of enrichment tailings, non-ore materials with a residual magnet 
content of up to 7–8%. Noteworthy, mining and processing works have accumulated billions of tones 
of production waste (tailings) that contain a huge amount of both iron-containing components and ores 
that can be used as building materials, for instance, for preparing fine-grain concretes, as mineral 
powder. The obtained materials can be also used for building roads, houses, for producing paint, etc.  

Currently, mining and processing works use wet schemes of separation and drum separators that 
have the following weak points: presence of water medium with larger resistance as compared with air 
medium; water medium has strong counteraction against the movement of magnetic and non-magnetic 
particles. As a results, a fraction of magnetic particles is lost together with non-magnetic ones. During 
the separation of low-magnetic materials, there is no magnetic flocculation (formation of reinforced 
aggregates due to mutual attraction of magnetized particles). There is also a necessity of feeding 
medium, i.e. water (wastewater). The source of waste and recycle water is the discharge waters of 
dewatering, desludging and washing machines and enrichment tailings. The contaminants in them are 
solid particles, hardness salts, ions of heavy metals and organic compounds. Untreated wastewater 
with suspended impurities and aggregates are a reason of ecological system deterioration with all the 
negative consequences: the rivers grow shallow dry up, the vegetation withers, the life decays. The 
purification of wastewater from harmful impurities includes mechanical, chemical, physicochemical 
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and biochemical methods. All these factors cause additional expenses and increase the marketable 
product cost. 

2. Materials and Methods. 
An alternative to wet separation is dry separation. From ecological perspective, dry magnetic 
separation is more reasonable separation method. Absence of the feeding medium provides 
appreciable economy of water, eliminates the necessity to treat wastewater and allows working 
without sludge dumps that occupy considerable areas and negatively impact atmosphere and 
lithosphere. Also, dry separation is the least energy consuming, since it is based on natural property of 
magnetic attraction of iron ores. 

The efficacy of dry separation of metallurgical plant enrichment tailings is possible through 
combination of magnetic extraction of metallic particles and air turning of the separated material. With 
due consideration of these requirements, a fluidized-bed separator was developed (see Fig. 1) to study 
the process of separation of a two-component mix.  

 
Figure 1. Structural and technological scheme of fluidized-bed separator: 1 – air slide; 2 – drag 
conveyor; 3 – transporting conveyor; 4 – magnetic system; 5 – fluidized material layer; ● – magnetite 
particles; ○ – quartzite particles 

 
The extracting capability of the fluidized-bed separator for dry separation depends on the 

characteristics of the magnetic system and physicomechanical properties of the separated mix 
particles, and on geometrical parameters of the operation zone as well. The extraction coefficient of 
magnetic particles η is determined by the correlation of their mass flows at the input of active zone G 
(хA) and at its output G (хO) (Fig. 2): 
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During the separation of particles in the separation zone, an aerodispersed flow of magnetic 
particles occurs that moves along the operation zone of the dry-separation fluidized-bed separator with 
the speed of the drag conveyor, vk. The concentration of magnetic particles in this flow is distributed 
along the height of the operation zone quite non-uniformly: it sharply drops from its maximum value 
in the fluidized layer down to the minimal value in the settlement zone on the transporting conveyor 
belt.  



3

1234567890‘’“”

MEACS 2017 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 327 (2018) 042101 doi:10.1088/1757-899X/327/4/042101

 
Figure 2. The design scheme for deriving the extraction coefficient for magnetite particles 
 
Let us consider the part of the operation zone of the dry-separation fluidized-bed separator between 

the lateral sections passing through points x and x+∆x (see Fig. 2). After the settlement of magnetic 
particles, their concentration reduces from С(х) down to С (x+∆x). The equation of material balance of 
magnetic particles for the selected part of the operating zone: 
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Here ∆x/cosα is the part of the transporting conveyor belt corresponding to ∆x; G(x) is the mass 

glow of magnetic particles passing through the lateral section of the operating zone corresponding to 
coordinate х: 

kvxbhxCxG )()()( = ,    (3) 
where h(x) is the height of this section: 
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where b is the width of the lateral section. 

Expressing the change in the mass flow of magnetic particles through its differential gives: 
)())()(()()( xdGxGxxGxxGxG −≈−∆+−=∆+− ,   (5) 

and separating the variables in equation (1) one has: 
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After integrating equation (6), there is: 
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From relation (7): 
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After substituting (8) into equation (1), one has the correlation for fraction coefficient of magnetic 

particle extraction: 
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Regarding the length of the active section of the operating zone, lA included into equation (6), one 
gets: 
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For the experimental dry-separation fluidized-bed separator (h2 = 0.015 m, δ = 0.003–0.013 m, vk = 
0.012–0.028 m/s, αн = 10–20°, с = 26.17 1/m, H0 = 37 kA/m, χЧ = 6.25, ρM = 5260 kg/m3, ФM = 1.65, 

g = 9.81 m/s2, µ0 = 4π·10-7(kg·m)/(s2
·A2), { }55;7.31;2.17;3.8;7.2=id  µm, µд = 1.8·10-5Pa·s, δл = 

0.003 m) parameter lA and particle settlement speed on the transporting conveyor belt, vос (equation 
(10)), has the following form: 
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where particle size d should be in µm.  
With due regard of equations (11) and (12), expression (9) can be rewritten as follows: 
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The correlation of theoretical and experimental values of the total magnetic particle extraction 
coefficient shows that the value of the of their concentration distribution nonuniformity coefficient in 
the operating zone of dry-separation fluidized-bed separator χ mainly depends on the thickness of the 
separated mixture in initial, bound state δ. After processing the experimental data, the following 
dependence was obtained: 

0224.0δ15.0δ50)(χ 2 +−=σ .     (14) 
Substituting equation (15) into (13), one gets a final expression for the fraction coefficient of 

magnetic particle extraction in the experimental dry-separation fluidized-bed separator. 
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3. Research.  
To study the dependence of the total magnetic particle extraction coefficient on the thickness of the 
initial layer of the separated mixture, let us assume for equation (3) the following: d = 29.8 µm, α = 
15°, vk = 0.02 m/s. Then, 
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From equation (15) it follows that with increasing separated mixture layer thickness, the extraction 
coefficient increases (Fig. 3). This is explained by both growing magnetomotive force and increasing 
particle concentration in the settlement zone. The maximum divergence is in point δ = 3 mm and 
amounts to 5.9%. 

The dependence of the magnetic particle extraction coefficient on the drag conveyor movement 
speed follows from equation (15) at d = 29.8 µm,σ = 0.008 m, αн = 15°: 



5

1234567890‘’“”

MEACS 2017 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 327 (2018) 042101 doi:10.1088/1757-899X/327/4/042101

kv

037.0

347.01η −= .      (17) 
According to equation (17), the magnetic particle extraction coefficient with the increase in the 

drag conveyor movement speed drops (Fig. 4), which is explained by the decrease in the mixture 
residence time in the active zone of the dry-separation fluidized-bed separator. 

 
Figure 3. Dependence of the magnetic particle extraction coefficient on the layer thickness of the 
separated mineral mixture: 1 – values calculated using equation (16); 2 – experiment 

 

 
Figure 4. Dependence of the magnetic particle extraction coefficient on the drag conveyor movement 
speed: 1 – values calculated using equation (17); 2 – experiment 
 

Maximum discrepancy of theoretical and experimental values of the extraction coefficient is 
manifested at the movement speed of v = 0.028 m/s and amounts to 5.16%. 

The dependence of the extraction coefficient on angle α follows from equation (15) when d = 29.8 
µm, δ = 0.008 m, vk = 0.02 m/s: 
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Dependence (18) is extremal. At first, during the increase in the magnetic system, the inclination 
angle increases up to α = 13°, the magnetic particle extraction coefficient rises; a further increase of 
magnetic system inclination angle α decreases the magnetic particle extraction coefficient (Fig. 5). 
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Maximum discrepancy of theoretical and experimental values of the extraction coefficient manifests at 
the magnetic system inclination angle α = 10° and amounts to 9.0%. 

 
Figure 5. Dependence of the magnetic particle extraction coefficient on the magnetic system 
inclination angle: 1 – values calculated using equation (18); 2 – experiment 

 
The dependencies of the magnetic particle extraction coefficient in the main domain of structural 

and technological separator parameters σ, vk and αн qualitatively and quantitatively agree well (with 
the accuracy of up to 9.0%) with the factorial experiment curves. The absence of growth regions and 
non-extremal character of theoretical curves is obviously explained by the approximated character of 
currently applied engineering methods for describing magnetic field of separators and properties of 
fluidized bulk materials. 

Industrial approbation of the application of finely ground enrichment tailings as the mixture 
components was carried out at the production of fine grain concrete and asphalt concrete. 

The additives to fine grain concrete were represented by the enrichment tailings with the fineness 
of 2% of residue on the 0.315-mm sieve. Mineral fillers were introduced into concrete in the amounts 
of 5, 10 and 15% of the cement mass. The introduction of larger amount was ineffective, and the 
strength of the specimen reduced. The fillers have show positive results as compared to the specimens 
from control lot with the introduced amount of 5 and 10%. The increase of the strength was noted for 
concretes with the fillers from the materials under study. The bending tensile strength and 
compression strength increased by 20%. After the introduction of 10% of the filler, there is similar 
distribution of the strength characteristics with lesser strength increase. The application of 15% of the 
filler is effective for the enrichment tailings; the strength of the material is virtually equal to the 
material without the filler, and the efficacy is represented by the economy of cement. 

4. Conclusions 
To increasing the performance of a metallurgical plant for separation of enrichment tailings, high 
efficacy can be reached when using the devices that use a magnetic principle of particle extraction and 
air turning of the separated material. To perform the experiment, an experimental fluidized-bed 
separator was developed and built. The experimental studies prove that the dry-separation fluidized-
bed separator has larger efficacy versus conventional separators and exceeds 90%. The finely ground 
enrichment tailings were practically proven to be effective in building material production. 
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