Рудяк Ю. А., канд. физ.-мат. наук Тернопольский государственный медицинский университет им. И.Я. Горбачевского

ЭКСПЕРИМЕНТАЛЬНОЕ ОПРЕДЕЛЕНИЕ ДЕФОРМАЦИЙ С ИСПОЛЬЗОВАНИЕМ ЭФФЕКТА ДИФФУЗНОГО ПОВЕРХНОСТНОГО РАССЕИВАНИЯ

v_stetsenko_v@mail.ru

В статье приведены данные по экспериментальной реализации метода диффузного поверхностного рассеивания (МДПР) определением напряженно-деформированного состояния (НДС) объектов. Определены деформации растяжения при различных схемах измерения интенсивностей зеркальной и диффузных составляющих рассеянного поверхностью объекта светового потока.

Ключевые слова: диффузное поверхностное рассеяние, деформация, напряженнодеформированное состояние, световой поток.

Постановка проблемы. Оценка прочностной надёжности и остаточного ресурса элементов машин и конструкций остаётся достаточно сложной проблемой, которую не всегда удаётся решить при помощи аналитических или численных методов. Для сложных случаев НДС, особенно при наличии геометрических и технологических концентраторов, часто, единственно применимыми становятся экспериментальные методы. Особое место среди которых, ввиду их высокой эффективности, занимают оптические. Поэтому значительный практический интерес и актуальность для инженерной практики приобретает развитие новых оптических методов экспериментальной механики.

Краткий анализ последних достижений и публикаций. Существующие оптические экспериментальные методы можно условно разделить на две большие группы: интерференционные и оптико-геометрические. К первой группе относятся такие методы, как поляризационнооптический, голографической интерферометрии, оптически чувствительных покрытий. Ко второй - метод градиентной фотоупругости, метод каустик, зеркально-оптический метод [1]. Используя методы первой группы, НДС объектов определяют, расшифровывая интерференционные картины, а методы второй группы основаны на геометрических определённых измерениях, например, отклонении луча. Предложенный метод, использующий эффект диффузного поверхностного рассеивания не относится ни к первой, ни ко второй группе известных методов [2,3]. Он основывается на измерениях интенсивностей зеркальной и диффузных составляющих рассеянного поверхностью деформированного объекта светового потока. На наш взгляд, включение метода в арсенал экспериментатора позволит расширить возможности инженера-прочниста оценивать остаточный ресурс элементов конструкций, наряду с имеющимися современными подходами [4].

Постановка задачи. Осуществить на тестовых экспериментах реализацию МДПР при различных схемах измерения.

Материалы и результаты исследования.

Для экспериментальной реализации НДС при помощи МДПР были проведены эксперименты с двумя образцами.

1. Пластина из материала на базе пластифицированной эпоксидно-диановой смолы ЭД-20 М размерами $125 \times 31 \times 1,6$ мм. Обе поверхности пластины обработали фрезерованием. После механической обработки параметры шероховатости следующие: $R_Z = 100-200$ мкм S=5-12 мкм. С помощью катетометра определены модуль Юнга I рода и коэффициент Пуассона материала пластины: E= 570 МПа, μ =0,37.

2. Пластина из материала на базе пластифицированной эпоксидно-диановой смолы ЭД-20М размерами $80 \times 20 \times 1$ мм. После механической обработки поверхности пластины имеют шероховатость : $R_Z = 100-200$ мкм S=5-12 мкм. Предварительно определены механические константы материала пластин: E=954 МПа, μ =0,36.

С каждым из двух образцов производили по четыре серии экспериментов.

1. Производились измерения интенсивности зеркальной составляющей светового потока, который прошел сквозь пластину и был рассеян её поверхностью для ненагруженного состояния и растягивающих усилий 392 H, 784 H, 1176 H.

2. Производились измерения интенсивности составляющей светового потока, отраженной под углом зеркального отражения от дифузнорассеивающей поверхности пластины для нагруженного состояния и растягивающих усилий 392 H, 784 H, 1176 H. Угол падения и отражения α=30⁰.

3. Производились измерения интенсивности диффузной составляющей (β=45⁰) рассеянного поверхностью пластин светового потока, который прошел сквозь пластину для ненагруженного состояния и растягивающих усилий 392 H, 784 H, 1176 H. 4. Производились измерения интенсивности диффузной составляющей ($\gamma=30^{0}$) светового потока, диффузноотраженного от поверхности пластины (угол падения $\alpha=0^{0}$) для ненагруженного состояния и растягивающих усилий 392 H, 784 H, 1176 H.

В результате произведенных измерений, по формулам:

$$\varepsilon_{1}^{3} = \frac{I_{0}/I - 1}{K_{i}(1 - \mu)}$$
(1)

для серий экспериментов 1, 2 (*i*=1,2),

$$\varepsilon_{1}^{9} = \frac{I/I_{0} - 1}{K_{i}(1 - \mu)}$$
(2)

для серий экспериментов 3, 4 (*i*=3,4), определяли главную деформацию $\mathcal{E}_1^{\mathcal{G}}$.

В формулах (1), (2):

 I_0 , мВт – интенсивность света, который попадает на приемник при ненагруженном состоянии объекта; I, мВт – интенсивность света, который попадает на приемник при нагружении объекта определённым усилием; K_i (i=1,2,3,4) – константы, которые зависят от параметров шероховатости, механических свойств материала, масштабного фактора, граничных условий, схемы проведения эксперимента и предварительно определяются на тарировочных экспериментах.

В таблицах 1, 2 приведены результаты проведенных экспериментов и соответствующих расчетов. Здесь же имеются данные по теоретически рассчитанным величинам деформаций \mathcal{E}_1^T .

Таблица 1.

Экспериментально определённые деформации $arepsilon_1^{artailet}$ и теоретически рассчитанные $arepsilon_1^{T}$

для образца 1

			/ \				
Схема эксперимента	F, H	$\sigma_{\!_1}$, МПа	K _i	I, мВт	$\boldsymbol{\mathcal{E}}_{1}^{T} imes 10^{2}$	$\boldsymbol{\mathcal{E}}_{1}^{\boldsymbol{\varTheta}} \times 10^{2}$	$\varsigma = \left \frac{\varepsilon_1^T - \varepsilon_1^{\Im}}{\varepsilon_1^T} \right \cdot 100\%$
1	0	0	1,15	134,9	0	0	-
	392	7,84		133,6	1,38	1,31	5,07
	784	15,68		132,3	2,76	2,68	2,90
	1176	23,52		130,9	4,13	4,21	1,94
2	0	0	1,18	22,90	0	0	-
	392	7,84		22,68	1,38	1,33	3,62
	784	15,68		22,43	2,76	2,84	2,90
	1176	23,52		22,23	4,13	4,08	1,20
3	0	0	2,57	14,92	0	0	-
	392	7,84		15,27	1,38	1,45	5,07
	784	15,68		15,62	2,76	2,88	3,99
	1176	23,52		15,94	4,13	4,21	1,94
4	0	0	1,25	8,64	0	0	-
	392	7,84		8,74	1,38	1,43	3,62
	784	15,68		8,84	2,76	2,91	5,43
	1176	23,52		8,93	4,13	4,32	4,60

Таблица 2

Экспериментально определённые деформации ε_1^{β} и теоретически рассчитанные ε_1^T

для образца 2

r 1 p										
Схема эксперимента	F, H	$\sigma_{\!_1}$, МПа	\mathbf{K}_{i}	I, мВт	$\boldsymbol{\mathcal{E}}_1^T imes 10^2$	$\boldsymbol{\mathcal{E}}_{1}^{\boldsymbol{\varTheta}} \times 10^{2}$	$\varsigma = \left \frac{\varepsilon_1^T - \varepsilon_1^{\Im}}{\varepsilon_1^T} \right \cdot 100\%$			
1	0	0	1,21	142,4	0	0	-			
	392	19,6		140,1	2,05	2,12	3,41			
	784	39,2		137,9	4,10	4,27	4,15			
	1176	58,8		135,8	6,16	6,32	2,60			
2	0	0	1,27	21,76	0	0	-			
	392	19,6		21,42	2,05	1,96	4,39			
	784	39,2		21,05	4,10	4,17	1,71			
	1176	58,8		20,71	6,16	6,23	1,14			
3	0	0	2,72	12,71	0	0	-			
	392	19,6		13,19	2,05	2,17	5,85			
	784	39,2		13,65	4,10	4,25	3,66			
	1176	58,8		14,13	6,16	6,40	3,90			
4	0	0	1,42	8,25	0	0	-			
	392	19,6		8,41	2,05	2,13	3,90			
	784	39,2		8,57	4,10	4,27	4,15			
	1176	58,8		8,73	6,16	6,40	3,90			

Выводы:

1. Экспериментально реализован МДПР при четырёх различных схемах измерения.

2. Сравнение экспериментально определённых величин деформаций ε_1^3 и теоретически рассчитанных ε_1^T позволяют утверждать о достаточно точном экспериментальном определении деформаций с использованием эффекта поверхностного рассеивания (погрешность, в основном, составляет 2-5%).

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Александров А.Я. Поляризационнооптические методы механики деформированного тела./А.Я. Александров, М.Х. Ахметзянов – М.: Наука, 1973. – 576 с. – ISBN 5-7038-1349-2

2. Пат АС СССР, М5 кл G01B11/18 Способ определения напряженно-деформированного состояния объекта / Рудяк Ю.А., Пизар В.Г. - №1668860 от 08.04.1991.

3. T.Y. Kepich Group of methods for diffused optical fields./ T.Y. Kepich, Y.A. Rudyak// Proceedings of the 10th international conference on Experimental Mechanics/ Lisbon/ Portugal/ 18-22 July 1994./ A.A. Balkema/ Rotterdam/ Brookfield/ 1994.

4. Димитриенко Ю.И. Нелинейная механика сплошной среды. – М.: Физиздат, 2010. – 624 с. – ISBN 978-5-9221-1110-2