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Abstract— The topicality of research is determined by the
progress trend in the development of the gearing technology
consisting in the upgrading of power transmissions based on the
multi-threaded power and kinematic principles of the rotation
transmission. Maximum efficiency is characteristic of the
harmonic gear drives that feature a wide range of gear ratios
from 80 to 400 in one stage and low weight-and-dimensional
characteristics. The solution of the problem of the stressed state
elasticity of the most heavily loaded segment — flexspline of the
heavy-duty harmonic gear drive improves the quality of design
engineering works, enhances reliability, increases unit power and
capacity as well as competitive properties of machines for mining
complexes.

The purpose of research is to increase the load capacity of
heavy-duty harmonic gear drives through the improvement of
the theoretical and experimental methods and procedures,
evaluation of their power and strength properties,
implementation of scientific results in the innovative design
solutions.

Target of research — power factors, strains and stresses that
are brought about in the flexspline when interacting with the
wave generator and circular spline of the heavy-duty harmonic
gear drive.

Keywords— flexspline, shell, gear ring, power factors, strains,
stresses, disk, wave generator.

|. RESEARCH METHODS

Flexspline is considered as a cylindrical shell with the
length of I, with the flexible gear ring of width kt one end,
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3. Poisson’s ratio is set to zero 0).

Mathematical model of the stress-strain state of the heavy-
duty harmonic gear drive flexspline has been devised which, as
opposed to the existing ones, makes allowance for the joint
effect of the gear and splined rings connected through the

RESEARCH FINDINGS

cylindrical shell, on the normal and tangential stresses as
well as linear and shear strains of the flexspline that enables to
refine strength design of the flexspline and to determine the
following:

- maximum stresses connected with boundary disturbance,
arising in proximity to the junction of the shell with the gear rim are
proportional to the flexspline thickness;

- decrease in maximum values of normal bending stresses
down to the level of maximum tangential stresses increases the
load capacity of the heavy-duty harmonic gear drive by 20 ...
25%.

[ll. INTRODUCTION

The flexspline strains form a multiple-tooth contact of the
highest kinematic efficiency and load capacity [1-4]. The
harmonic gear drives are produced with the cam wave
generator [5] the operation of which differs from the same of
the disk wave generator considerably varying the strains of the
flexsplines.

The widest variety of theoretical and experimental research

and splines of width p at the opposite end. The ratio of the in the basic lines of geometry, kinematics, power analysis,
shdl thickness h to the circle diameter 2a dividing the shelloscillating processes, stress-strain state and strength of the
wall in two, makes 0,012. The stressed state of the shell fexspline as of the other load-carrying parts and units has
considered as a field of perturbations in the consequence béen conducted preferably for rather small harmonic gear
boundary disturbance at the shell edge, placed on the field dfives with cam wave generators [6-10].

tangential stresses at uniform distribution of tangential forces Availability of the flexible seament chanaes not onlv the
along the shell edge. The field of perturbations arising from__. N Iy di f thg . 9 ti b{ |
boundary disturbance can be found using the semi-membraff! Principies and 1aws ot Ihe gearng operation but aiso

shell theory by V.Z. Vlasov, under the following conditions: Provides the harmonic gear drives with the new positive
properties, changes the level of qualitative and quantitative

1. Bending momentsM, and torquesM in sections variables capable of adjusting technical characteristics of the
perpendicular to generatrix and shearing force in the sant@&rmonic gear drives, enhancing prospects for their priority
sections are ignored. development. Symmetric two-wave multi-threaded field of

5 Shear strain of the middle surface is absent. the gearing balances power structure of the wave gearing,
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provides high torsional stiffness, manifold decreases loads on . . . X
We use the dimensionless coordinates: — and Theta,

the teeth, secures high load capacity as well as consistency of a
the preset values of kinematic characteristics [11-14]. 9 19
. . whereX is linear dimension of axis Then — =——,
The available scale factor makes it difficult to carry oX aox

scientific developments of small prototypes with the canus set up equilibrium equation for the element of the
generator over to the heavy-duty harmonic gear drives witbylindrical shell relative to the local coordinate systey z

the disk generator. The development of the harmonic gear drives

with due consideration of the specific features of the flexspline

strains and stresses presents a topical problem of power ONy +§:0 §+0Ng +Qp=0
transmission the solution of which would increase the unit ox 068 ' ox 08 ¢ '
power and capacity of the machines, reduce the dimensions (2)

and weight, improve the quality and increase competitive

advantage of heavy engineering products. Key provisions of 90 aM

this paper consist in the development of mathematical model I%6 _ Ng =0, —-aQg +2%0 .

of the stress-strain state of the flexspline of the high-load 06 00

harmonic gear drive with the disk wave generator and the

determination of the flexspline field of stresses and strains Power factors referred to the middle surfabg, N theta

required to optimize its design parameters. Qrheta Mrhas) are associated with its strain by physical
equations

IV. SETTING AND SOLUTION OF ELASTIC BOUNDARY VALUE

PROBLEM N, = Eh/Epsilon, Mtheta= D Lhipera (3
The shell features a part of the flexspline free of outer load
and it transmits the torque [15, 16]. The field of perturbations where Epsilogis unit strain in the direction of axig
caused by the nonuniform strain of the shell edge determines
its strength [17, 18]. Nonuniform tangential strain is a critical
one; it far exceeds the longitudinal strain. The assumptions

2 2
taken are equivalent to the conditiog% <<a—, where
0Sy oSy

f — power and geometric factors;

S, § —elements of the length of coordinate lines in the
axial and circumferential directions [19].

Geometric and power factors in the direction of the shel
generatrix vary much more slowly than in the circumferentia

n?
1222’
obtain tangential stresses Tadfiouter load\/

direction [20]. Let us set:{2 =

——SZS+D. We
2 2

z
_Ma+g) M(lfa) \

~lp 2malhleae?)

(1)

Let us isolate the shell element by means of two plane

passing through the shell axis, and of two orthogonal planes 8,

this axis. Let us transfer power factors operating in the )

sections to the middle surface element and apply them along Fig. 1. Power factors applied to the shell element
the coordinate lines of local coordinates. The transfer of

the stress tensor components to the coordinate lines of the 3

middle surfacex=const;Theta= const) has determined power D =——— cylindrical stiffness of the shell with the
factorsN,, Nthga, M Theta S, Q Theta, referred to the unit of . 12 B
length of one of the coordinate lines (fig. 1). proviso thatNu = 0.

Physical equations — consequence of Hooke's law and
hypothesis of linear normals, will be obtained by summing up
power factors and their moments in the direction of axis
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Components of point displacement vector of the D 64® 350
middle surface in the direction of coordinates, z will NH:——4( ]

be identified as, v, w. 06* 66?6
Unit strain in the direction of axis ©))
From the first equation of equilibrium (2) we deduce the
_O0u_odu derivative
X7 aX  adx
Total unit strain in the direction of axjs 0S_ 0Ny __Eh %0 )
300 x 22 g3
£p _5(3\5/; W]. From the second equation (2) we deduce the resolving

equation for function Phi( Theta) We differentiate the

mentioned equation on parametdreta
Total change of curvature of coordinate lxe const in

the direction of change of angle Theta; i.

i(aS] 92 Ng an

xag) 72 T % (10)
X

¥ __1|_ov 6W

e a2 FY) 692

99% 06
. 0S .
In equation (10) we replat®theta Ntheta ——— USIng

dThete
Physical equations are obtained with due consideration ofxpressions (7 — 9)
the assumptiorNu= 0, let us substitute value=spsilony, and

Chirneainto the formulae (3)

4 8 6 4
af+{26c2+26c§+ac§ -0, (11)
0X 04 06° 04
Eh u D[ v, o%w
Ny =——, Mg=Dy, =—— 4
X7a ox 6= Xe az( 20 ang “) %(qbk @()cosk9)=k4@k (x )coska;
7
Let us express components of the displacement vector
through the function of stresses Phi 5 (12)
— (@ & )coskd)= k8@ ( )cosk;
g
190D 10d _10%
u=s——, vVv=—-—"—, wW=———. (5)
a ox aag a 962
0 18
Let us insert expressions (5) into formulae (4) a?(@k (X)COSk‘g) = k" K )coskd.
Eh 920 D 020 64<D The solution for function Pl(ix ,Thete) will be obtained as
X% % Mg=——=|—+—~ (6)  an expansion in series of cosines
a® ox 06 06
From the forth equation of equilibrium (2) we deduce o(x p) = §<D & YEoskd
shearing forc&rheta ( ) k=1 “
(13
_10Mg _ D 230 65(15 After substituting the values (12) and (13) into the
“a 99 4 693 695 equation (11), we will obtain
(7)
o 2
From the third equation of equilibrium (2) we deduce force 21k4(k2 —1) o (x)+ oY (oskd=0.  (14)
NTheta k=
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Since coskTheta at k = 1;2... linearly independent 1 X =M X
orthogonal in the range [@;] of function (14), the expressions shmyx ‘E(enk -ek ) :
in brackets should go to zero

Complete solution of differential equation (15) is

¢('V)()+{2k4(k2 1)2q§() 0 Kk=123.). (5) sxpr(_assed through arbitrary constants and fundamental
kX - k\X)= 0, K=12Zs..). unctions

Characteristic equation for numbenof terms of series for

function Phitakes on the following form P () = Adac () + Ao (9 + (29)
+ AP (X) + AgkPax (X).
/14+£2k4(k2 _])2 -0. (16) Functions Phi,, Phi, Phisy, Phiy are arcwise connected

to Krylov’s functions

From formula (16) in view of Euler’s formulae we obtain:
K(mx) = gk (), Ko (ex)= 08k (x) + P (X)),

/14=—{2k4(k2 —1)2; A2 = 2222 -1

K3 (x)= 0504k (¥), (20)
IT
22 =K2(K2-1e 2¢ Kg X F 02fch (ex sinfx )= sh e x cogmex)]
12 : 4 , meX)| .
Roots of characteristic equation (16) System determinant (20) Delta#z 0, thus, complete

solution of the equation (15) may be represented in terms of
linear combination of Krylov’s functions

k-1 .
Ao234 =%k —_— [ﬂlil). an
125 Dy (X) = Cy Ky (M X) + Cox Ko (myeX) + (21)
+CacKz(mex) + Cae K g (Mg x).
According to the roots (17) of the equation (16),
elementary linearly independent solutions of differential whereCyy, Cy, Cai, Cak— arbitrary constants.

equation (15) will be functions: Coefficients Cy, Cox, Ca, Cs in the formula (21) are

determined from the boundary conditions. The shell edges:
$1, &)=chmyxcosmyx;

[(x: O), (x:q), q :q are free, k.
#2, &)= shmyxcosmex (18) :

Ny(x=0)=0; Ny(x=q)=0. (22)
#3, )= chmxsinmgx;
The third condition is taken as inextensibility of the
flexspline ring atx= q

s, (x)=€ KX shmyxsin myex
V(X: q) =0. (23)

The fourth boundary condition ak = 0 - equal
K2 _1J displacementsv of the gear ring and the shell. The gear ring

model- a ring with the width ob, and thickness dfi,, equal
2 to half-sum the gear ring tooth space and crest thickness,
undergoes plane strain (fig. 2). Let us consider equilibrium of

the ring element under the action of forb%]eta, Q1Dheta,

where my =k g{

chmyx = %(emkx + e—mkx) , bending momentM Theta, force S and normal load q5.
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Power factors of the ring marked with astelﬁ%eta,
QThetav MTheta are referred to the cross-section of the ring,

S qn — linear loads referred to the unit of arc length.

Equilibrium equations of the ring element in the local
coordinate systemy z

aNg

+Q +S@A=0,

(24)

do

Fig. 2. Forces and moments applied to the gear ring element

Advances in Engineering Research, volume 158

In the 3 equation (25) we replacNTDheta and Q1Dheta by
the obtained values

d3Mp 6 , dMy dMg
d6°3 da

a2 dQn
dg -

+a’s= (26)

Let us use the second formula (4) of the general physical
law, for the shell and the ring,for the ring may be referred to

the total width of the rindp; (24)
* aV 62
M 9= _— (27)
a2 [66’ 092]
byhy 3
where = JXO— moment of inertia of a cross-section

of the ring about the axis,.

Let us assume that the middle surface of the ring is
inextensible, e. EpsilonTheta=0.

Unit tangential strain of the coordinate ling=¢onst)
depends on the componendf the displacement vector

dSy aldfd a
The ring strain Epsilonthetais expressed through the
displacement vector componentsEpsilonThetg and
EpsilnTheta
1( dv dv
Eg=—|—+w|, ateg=0 —=-w 28
¢ a(d@ j 97" e (28)

Power factors in the equations (24) depend on Theta only,

d d
let us replace by
OThete dThet¢
c_10Mg. . 1 My
W= e Ne= F ot

(25)

Let us substitute valuespsilon theta from formulae (28)
into the expression (27)

(29)

Insert value (29) into the formula (26)
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EJ 5
5. %0 {d W

a* | de°

d3w+dw __%
de

45 al (30)

Let us replace distributed Ioaqﬁ by two opposing

concentrated forceB with the help of Delta - Dirac delta
function

o= [0{6)+a(o+ . 3)

Onpu Thetaz 0
where DeltalThetg = P Theta=0
0 npu =

Dirac delta

+7T
function corresponds to the equatigd(@dd=1; P —
v/
resultant of the distributed Ioaﬁ. Supposing thais=adé,
we find

+7T P+7T

| dn lCofdsg = — jd(ﬁ)cosﬁmdﬂz PLeoH=P.
a

- -

The distributed load resultant equals to concentrated ford€
P. Delta—function will be formally expanded in Fourier

saies
(o]
3(6)=ap+ Saycoskd.
k=1

We will find the Fourier coefficients,, a, and obtain
values DeltaThetd u Deltal hetat Pi)

+77 _ B 1 B 1
Toteko=1, ap- L. ac-L,

+7T +77
[ 5(6)coskBdf=1=a, [ cosdd=m,

/i /i

a(6)= Zi[ B 25 coskﬁ) , (32)

T k=1

56+ 7)= %T( 2 25 codo+ ik)] -
K=

1 2 0o (33)
-E[ W 2}21& 1 cos(ke)J.

Advances in Engineering Research, volume 158

Substitute values (32) and (33) into the formula (31), find
qE and the derivative

« P ©
Oh=—| ¥ 2 Ycoské |
™ k= 246...

. (34)
B __2P 1 Syminks.
dd  m g=24..

The series in the second of the formulae (34)
diverges, and we substitute it into the differential equation
(30); when integrating it we will obtain the convergent series

EJ 5 3
a® | de® " de =0

= 2P Sysinke. (35)
Tayg=24..

The expression (35) is the fourth boundary condition for
section x = 0, where the inflexions and forces S are common
for the ring and the shell. The conditions (22), (23), (35) are
sufficient to determine coefficient€, Cok, Ca, Cak IN
presentation (21) for the function Rh). From the
expressions (13) and (21) let us represent the stress function

D(x,6)= ¥ [CrcKa(mex) +CocKo(mx) +
k=24, (36)

+CacKa (X 1+ CacKa (ex ] coske.
According to the expression (38), with the odd
coefficientsCyx Cox, Csx, Caxin the formula (36) equal to zero.

Under the conditions of (22), according to the first of the
formulae (4) and formulae (5) we obtain

_Ehdu _Eho?p _
aox a2 gy

2 2
® d°K X d°K X
-3 o K)o, %Ka(mog
k=2486,... dx dx

2 2
+Cgy w +Cyy dK4—(2m‘X) coskd. (37)
X

dx

Let us use the properties of Krylov’s functions

d2Kq(me¥) _

52 =4 K3 (Mg x);
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d2K X
KD - iy
dx
(38)
d2K X
—3(§‘< ):”ﬁKl(fka);
dx
d2K
—;X(;kx) = mEK (Mex).

Substitute values (38) into the formula (37)

Eh

Nx =— X
a? k=1

e[ 4CK3(myex) —4CxK 4 (mex) +

+CacKq (X 1+ CacKo frix Jcoské. (39)
Considering that
Ki1(0) = 1;K5(0) =K3(0) =K4(0) = 0;Ca=0; (40)

—4C1 K3(mea) —4Co K 4(ma) + CaKo(mya) =0. (41)

Using the equation (40) we will transform the expressio
(39)

Eh ot
— X
a” k=246...
- Lo Ky rx )+ CqKo (’T](XjCOSke.

Nx

= 2 [-acy K -
mk[ 1k K3(mgX) @)
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O;'\." MPa .

80?' L ! I | |

136 204 272 340

68

Fig. 3. Normal tangential stresses Sigma 1 — 4 andSigmaetas 5 — 8 on
the inner and outer surfaces of the flexspline shell; 1 and 5 - at Theta 2 0
and 6 - at Theta = 303 and 7 - at Theta = 0t and 8 - at Theta = 90

The strength design has been performed for the flexspline
with the wall thicknesf = 13,5mm at load Maye,=510°Nm of
the harmonic drive unit for relining MGR558D500 ore-
pulverizing mill with the useful capacity of 160°nweight of
ore to be loaded amounting to 220 tonne. Normal tangential
stresses acting on the inner and outer surfaces of the shell are

ndesignated aSigMmaear and SigMmaneras MPa depending on

the distanceX to the gear ring, at fixed values of the angle of
deflection Thetafrom the major axis of the wave generator.

V. CONCLUSION

The disks form elastic wave-induced strain of the flexible
gear ring the rotation component of which is taken off by the
shell to the output shaft. The stress-strain state of the

From the second formula (5), with consideration for (36)flexspline strained by the wave generator disks is worked out

(20), (40), (23), we will obtain

1 00
V=-= Sk[CrKy(mex)+CoKa(mex) +
a k=246,...

+CaKg (n(x}sirké?. Atx=gq, V =0.

By the solution of the ring and the shell elastic boundar
value problem the power factors required for calculating th
stressed state of the flexspline have been obtained [21] (fig. 32‘

through the combined solution of the ring and the shell.
External load on the gear ring is transformed using the Dirac
delta function. Based on the research findings, determining are
the normal tangential stresses on the flexspline inner and
outer surfaces Sigmaand SigMaeas reaching maximum
values at the joint of the shell with the gear ring where tensile
stresses (SigMmawamx= +84MPa on the outer surface of the
flexspline, maximum compression stresses (Sigfdmax = -

7 MPa on the inner surface. Mathematical model evaluation

as been made by experiment, employing the strain-gauging
ethod. Divergence of the obtained results of the comparative
nalysis does not exceed 8 ¥he accuracy of solution of the
boundary value problem of the flexspline elasticity has been
increased by 25... 30 %.

The results of the solution of the boundary value elasticity
problem of the flexspline subject to permanent strain by the
disk wave generator have made it possible to develop heavy-
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duty waveform gear reduction units meeting the up-to-daté]
requirements imposed on heavy engineering products. The
mentioned results have been also used when working out
calculation and design technical materials for the design art

PRESS

production of waveform gear reduction units for heavy

engineering and have been applied to the main drives of
mining equipment and other machinery intended for heavyij

industry.
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