
 
Journal of Engineering Physics and Thermophysics, Vol. 91, No. 3, May, 2018

SIMPLIFIED ALGORITHM FOR NUMERICAL SOLUTION
OF LIQUID FLOW EQUATIONS

V. A. Kuznetsov      UDC 519.63

An algorithm is suggested for numerical solution of differential equations for velocity and pressure on a staggered 
grid. The algorithm ensures unconditional convergence of iterations for a correction to pressure and without it.

Keywords: mathematical model, incompressible liquid, velocity, pressure, correction to pressure, computational 
algorithm.

Introduction. An algorithm for fi nding the velocity fi elds of an incompressible liquid (or a gas without account 
for its compressibility) is a constituent part of numerous mathematical models. It is based on the mass and momentum 
conservation laws transformed into differential equations. With gravity force ignored, the equations for stationary motion of 
a medium can be presented in tensor notation as follows:
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Navier–Stokes equations for three components of velocity ui
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Here, the terms of the equations are summed up over the repeating indices i and j that number the coordinate axes x, y, and z, 
along which the corresponding velocity vector components u, r, and w are directed.

The equation for calculating the static pressure is obtained by artifi cially introducing its values into continuity 
equation (1). As a result, in numerical implementation of the algorithm, the problem of correctly determining the fi elds of 
pressure p and of the three components of the vector of velocity u, v, and w in an incompressible viscous fl uid arises. The 
projection method, in which fi rst the velocity fi eld is constructed that does not satisfy the continuity equation and then its 
correction is made, can be considered a palliative solution [1]. An obligatory part of this method is an approximate discrete 
equation for correcting pressure whose sole function is to provide for the convergence of iterations to the desired solution 
of the problem [2]. According to [3], the solution of the equation for the pressure takes the greatest part of time in numerical 
simulation of incompressible liquid motion. In the majority of cases, to calculate the correction to the pressure, an internal 
iterational cycle is created, and strong under-relaxation is applied, for example, as was done in [4].

The paper presents a simplifi ed algorithm of numerical simulation of incompressible medium motion that does not 
require the solution of the equations for the correction to pressure or the relaxation of this correction.

Discrete Equations in the Model of Motion of Incompressible Medium. A correct transition from differential 
equations to their discrete algebraic analogs is carried out on a staggered grid [2] in which control volumes for each velocity 
component are displaced half-step along the corresponding coordinate axis relative to the control volume for pressure. 
Transition to a computational control volume is accompanied by the displacement of all the symbols of the grid nodes, as 
shown in Fig. 1, where the control volume with the central node P for the longitudinal velocity u directed along the x axis is 
set out by bold lines. The central nodes of the neighboring control volumes are denoted by W, E, S, and N, and the remaining 
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nodes correspond to the faces and corners of the set-out control volume. The nodes B, T, b, and t along the z axis and the 
corner points wb, wt, eb, and et are not shown in Fig. 1.

Integrating the Navier–Stokes equations over the displaced control volumes, we obtain a system of discrete equations 
for the velocity components ui:

 
( ) / ,iu

iP W iW E iE S iS N iN B iB T iT i iPa u a u a u a u a u a u a u p x= + + + + + − Δ Δ   (3)

where aP, aW, aE, aS, aN, aB, and aT are the coeffi cients of the discrete equations; Δpi is the difference between the pressure 
values over the segment Δxi on the ith coordinate axis. The coeffi cient on the left hand side of equality (3) is furnished with 
a superscript pointing to the fact that it belongs to a defi nite velocity component and simultaneously to the method of its 
calculation as a sum of transfer coeffi cients that were determined on the faces of the computational control volume:

( ) .iu
W E S N B TPa a a a a a a= + + + + +

If the velocity fi eld satisfi es the continuity equation (1), the substitution of the expressions for velocity components 
into the discrete analog of the differential continuity equation (1) leads to a discrete equation defi ning the pressure pP at the 
central node P of the control volume [2]:

 
( ) .p

P W W E E S S N N B B T T PPA p A p A p A p A p A p A p D= + + + + + +   (4)

Here AP, AW, AE, AS, AN, AB, and AT are coeffi cients, and DP is the free term of the discrete equation for pressure calculated 
from the pseudovelocity values [2]. The subscript P designates the central node of the control volume for pressure. The 
coeffi cient at the sought pressure pP also has a superscript to show its equality to the sum of the coeffi cients determined at 
the faces of this control volume:

( ) .p
W E S N B TPA A A A A A A= + + + + +

Fig. 1. Scheme of displacement of control volumes (hatched) for velocity components u 
and v along the x and y axes.
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In the process of iterations, the velocity components usually have values that do not satisfy the continuity equation 
(1), as a result of which the pressure fi eld calculated by Eq. (4) turns out to be incorrect. So that the calculated pressure fi eld 
can approach the true one in the process of iterations and so that the velocity fi eld can better satisfy the continuity equation, a 
correction to pressure p′ is introduced. It is calculated from the approximate discrete equation analogous to Eq. (4) but with other 
free equation term PD′ , equal to the calculated source of mass in the control volume for pressure taken with a reversed sign [2]:

 
( ) ,p

P W W E E S S N N B B T T PPA p A p A p A p A p A p A p D′ ′ ′ ′ ′ ′ ′ ′= + + + + + +  (5)

( )/ ( )/ ( )/ .P w w e e s s n n b b t tD u u x v v y w w z′ = ρ − ρ Δ + ρ − ρ Δ + ρ − ρ Δ

It was suggested to exclude the rather complex calculation of pressure on the bounding walls from the computational 
algorithm by applying such a system of constructing a grid, in which one of the faces of each near-wall control volume for 
pressure is located on the wall surface [2]. In Fig. 2, for example, a control volume for pressure is set out, the lower face of 
which adheres to the wall located along the x axis. As a result, the pressure ps on the wall does not enter Eq. (4) written for 
this volume.

For the correction p′ calculated to the pressure from the discrete equation (5) it is recommended in [2] to use the same 
boundary conditions as for the pressure. Probably, other more rigorous boundary conditions are also possible, taking into 
account the fact that the error of the pressure correction tending to zero in the course of iterations ultimately does not exert its 
infl uence on the results of numerical simulation.

Transformation of Discrete Equations. If the boundary conditions do not specify the values of p′ on the surface of 
walls, they virtually also do not infl uence the value of the pressure correction at the grid nodes. A system approach shows that 
in the case where the infl uence of the boundary is not transmitted inside the computational domain, the couplings between 
the values of p′ at the inner grid nodes, determined only approximately, turn out to be insignifi cant and, consequently, there is 
no need to take them into account. With such simplifi cation, the right-hand side of Eq. (5) will have only the free term PD′ , 
whereas the sought correction to pressure will become equal to the calculated source of mass taken with a reversed sign and 
divided by the coeffi cient ( )p

PA :
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The correction to pressure presented in a simplifi ed form allows one to introduce its expression directly into the 
discrete analogs (3) of the Navier–Stokes differential equations:
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Fig. 2. Control volumes at the boundary with an immobile wall.
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Using the staggered grid here, it is well to bear in mind that transition to computation of each velocity component in the 
displaced control volume is accompanied by the corresponding displacement of all the designations of grid nodes.

While the longitudinal velocity uP is calculated by the discrete equation (7) at the central node P of its control volume 
(see Fig. 1), the pressure and its correction in this equation are determined at the nodes w and e on the faces of the same 
control volume. In this case, the free term of the discrete equation (5) for the correction to pressure is calculated at the control 
volumes with central nodes w and e from the following expanded expressions:

[( ) ( ) ] [( ) ( ) ] [( ) ( ) ] ,w W P ws wn wb wtD u u x v v y w w z′ = ρ − ρ Δ + ρ − ρ Δ + ρ − ρ Δ

[( ) ( ) ] [( ) ( ) ] [( ) ( ) ] .e P E es en eb etD u u x v v y w w z=′ ρ − ρ Δ + ρ − ρ Δ + ρ − ρ Δ

We will use these expressions instead of the wD′  and eD′  in the equation for the longitudinal velocity uP:
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Characteristically, the right-hand side of the obtained equality and, consequently, the right-hand side of the modifi ed 
discrete equation (7) for the longitudinal velocity involve, among other things, the terms with a negative sign that contain 
the desired value of uP. The fact that in such a case the role of constructing discrete analogs is violated [2] endows the 
computational equation with the property of conditional stability that does not guarantee the convergence of interactions in 
a general case. To obviate this serious shortcoming, it is necessary to transpose all the terms containing the sought velocity 
uP into the left-hand side of the computational equation. The difference scheme will then become entirely implicit and will 
acquire the property of unconditional stability.

The same result can be obtained by a simpler method. It is necessary to add the terms containing the sought velocity 
uP to both sides of the computational equation in order to neutralize the same terms entering with a negative sign into their 
right-hand side. Having made the needed mathematical transformations in Eqs. (7)–(9) for all three components of mass 
velocity, we obtain the discrete equations of the simplifi ed algorithm:

 

( )

( ) ( )

( ) ( ) 2
/ / 1 1  ,

u
P W W E E S S N N B B T TP

p p
e w e e w w P P

p p
w e

a u a u a u a u a u a u a u

p p D A D A u
x x A A x

= + + + + +

⎛ ⎞′ ′− − ρ
− − + +⎜ ⎟⎜ ⎟Δ Δ Δ⎝ ⎠

 (10)

 
( )

( ) ( )

( ) ( ) 2
/ / 1 1 ,

v
P W W E E S S N N B B T TP

p p
n s n n s s P P

p p
s n

a v a v a v a v a v a v a v

p p D A D A v
y y A A y

= + + + + +

⎛ ⎞′ ′− − ρ
− − + +⎜ ⎟⎜ ⎟Δ Δ Δ⎝ ⎠

 (11)



652

 
( )

( )( )

( ) ( ) 2
/ / 1 1 .

w
P W W E E S S N N B B T TP

pp
t t bt b P Pb

p p
tb

a w a w a w a w a w a w a w

D A D Ap p w
z z A zA

= + + + + +

⎛ ⎞′ ′−− ρ
− − + +⎜ ⎟⎜ ⎟Δ Δ Δ⎝ ⎠

 (12)

The coeffi cients aP on the left-hand side of the computational equations are defi ned by the following formulas:

( )( ) ( ) ( ) 21/ 1/ ,u p p
W E S N B T p w ePa a a a a a a A A x= + + + + + + ρ + Δ

( )( ) ( ) ( ) 21/ 1/ ,v p p
W E S N B T p s nPa a a a a a a A A y= + + + + + + ρ + Δ

( )( ) ( ) ( ) 21/ 1/ .w p p
W E S N B T p tP ba a a a a a a A A z= + + + + + + ρ + Δ

The appearance of mass sources in the discrete equations (10)–(12) for the velocity components has a defi nite 
physical sense: the difference between the mass sources favors the computational "passage" of liquid into the control volumes 
where the mass source is smaller. The convergence of iterations is ensured by the presence of a group of formally identical 
terms on both sides of the discrete equations (10)–(12), with these terms producing the under-relaxation of the calculated 
velocity component. This relaxation can be considered as locally defi nite, since at each computational node of the grid its 
value corresponds to the local condition of sustaining the convergence of iterations. As a result, the sum of absolute values 
of mass sources in the computational domain decreases in the process of iterations, whereas the velocity distribution better 
satisfi es the differential continuity equation (1).

Thus, in the simplifi ed algorithm intended for mathematical simulation of the three-dimensional motion of an 
incompressible fl uid, the discrete equations (10)–(12), which determine the mass velocity vector, and one equation (4) for the 
pressure, are solved numerically. The discrete equation (5) for the correction to pressure is excluded from the mathematical 
model.

Generalized Form of Simplifi ed Algorithm. It is worthwhile to introduce the locally determined relaxation into 
the equations for the velocity components also in those cases where the correction to pressure is calculated from discrete 
equation (5) under more rigorous boundary conditions. For example, it is possible to assume that the convergence of iterations 
in calculation of the velocity fi eld will improve if the correction to pressure on the wall surface is equated to zero and 
simultaneously linked with the correction to pressure at the node closest to the grid. In particular, to establish connection 
between the pressure corrections sp′  and Pp′  in the control volume set out in Fig. 2, it is necessary to fi nd the coeffi cient AS 
in Eq. (5) by the well-known formula [2]

( ) 2/( ) ,v
S s sA a y= ρ Δ

having preliminarily determined the coeffi cient ( )v
sa  in the displaced control volume for the transverse velocity vs.

In this case, only one coeffi cient an on the faces of the displaced control volume differs from zero, which makes it 
possible to adopt the following estimation of the values of computational coeffi cients:

( ) 2/ , 1/ ,v
s n P P S Pa a y A= ≈ ρ ν Δ ≈ ν

where vP is the sum of the kinetic coeffi cient of viscosity and its turbulent analog at the near-wall node of the grid.
Now, the computational discrete equations for the components of mass velocity are reduced to the following 

generalized form:
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The coeffi cients aP on the left-hand sides of these equations are determined in the same way as in Eqs. (10)–(12) of 
the simplifi ed algorithm. In calculating the correction to pressure from discrete equation (5), it is not required now either to 
apply relaxation or organize the internal cycle of iterations.

Approval of the Simplifi ed Computational Algorithm. The simplifi ed algorithm of the numerical solution of the 
equations of incompressible fl uid motion was presented for the fi rst time at the conference in 1995 [5]. In subsequent years, 
it was improved and checked comprehensively. The application, over many years, of the simplifi ed algorithm for computer 
simulation of subsonic motion of high-temperature gases has confi rmed its reliable convergence in numerical solution of 
various engineering problems [6–9].

The experience of computer simulation has shown that the order and method of numerical solution of transformed 
discrete equations for pressure and velocity components does not exert a substantial effect on the calculated results. 
Nevertheless it is not recommended to apply any relaxation in solving a discrete equation for pressure, since for speeding up 
the convergence of iterations the pressure must correspond maximally to the velocity vector fi eld.

CONCLUSIONS

1. For calculating the three-dimensional velocity fi eld on a staggered grid a simplifi ed algorithm has been justifi ed 
that uses calculated mass sources for correcting the pressure fi eld and that ensures unconditional convergence of 
iterations without solving the discrete equation for pressure correction.

2. The equations of the simplifi ed algorithm are brought into a generalized form allowing one to introduce into them 
a pressure correction calculated from discrete equations at more rigorous boundary conditions.

3. A long-standing experience of applying the simplifi ed algorithm has confi rmed the reliable convergence 
of iterations in numerical simulation of subsonic motion of high-temperature gases in the approximation of 
incompressible fl uid.

NOTATION

a, A, coeffi cients in equations for velocity and pressure components, respectively; D, free term in the discrete 
equation for pressure, kg/(m3·s); D′, calculated mass source taken with a reverse sign, kg/(m3·s); p, static pressure, Pa; 
p′, correction to pressure, Pa; u, v, w, velocity vector components, m/s; x, y, z, Cartesian coordinates, m; ν, kinematic coeffi cient 
of viscosity, m2/s; ρ, density, kg/m3. Indices: w, e, s, n, b, t, points on the faces of control volume; P, W, E, S, N, B, T, nodes 
of the grid; i, j = 1, 2, 3.
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