Байдин О. В., канд. техн. наук, докторант Белгородский государственный технологический университет им. В.Г. Шухова

К ВОПРОСУ ОБ ОБРАЗОВАНИИ ТРЕЩИН В ЖЕЛЕЗОБЕТОНЕ ПОВРЕЖДЕННОМ КОРРОЗИЕЙ¹

oleg.v31@yandex.ru

В статье рассматривается трещиностойкость изгибаемых железобетонных элементов поврежденных коррозией. При этом приводится метод оценки ресурса силового сопротивления образованию трещин в эксплуатируемых поврежденных коррозией изгибаемых железобетонных элементах.

Ключевые слова: трещиностойкость, коррозионные повреждения, изгибаемый элемент, силовое сопротивление.

Предупреждение и ликвидация чрезвычайных ситуаций техногенного или природного происхождения, как государственная научная и технологическая проблема², включает задачу обеспечения эксплуатационной пригодности железобетонных конструкций, которые требуют дополнительной трещиностойкости первой категории.

Это относится к сооружениям природоохранного, коммунального, коммуникационного и специального назначения. Во время эксплуатации такие сооружения, как правило, подвергаются агрессивным воздействиям внешней среды. Чаще всего – это химические жидкие или газообразные кислото- и щелочесодержащие вещества, вызывающие коррозионные повреждения бетона и арматуры. Поэтому оценка ресурса долговременной трещиностойкости конструкции и вычисление усилий от внешних нагрузок, вызывающих образование трещин в сечениях железобетонных конструкций, поврежденных коррозией, актуально.

В данной статье в качестве базовой рассматривается задача трещиностойкости изгибаемого железобетонного элемента.

Решение сформулированной задачи осуществляется в следующей последовательности и с помощью следующих посылок:

 считается, что к началу действия коррозионной среды конструкция воспринимает внешние нагрузки и находится в установившемся константном напряженно-деформированном состоянии, а характеристики внешней коррозийной среды неизменны во времени;

 учитывается, что развитие коррозийных повреждений существенно зависит от уровня напряжений и подчиняется обобщенному закону [4]:

$$\frac{\alpha(\Delta\delta)}{\alpha t} = -\alpha(\Delta\delta)^{m}; \text{ где } \Delta\delta = \frac{\delta_{\infty} - \delta}{\delta_{\infty}}; \ m = \sum_{i=0}^{2} q_{m_{i}} \eta^{i};$$
(1)

$$\eta = \frac{\sigma_{cp}}{R}; \ \sigma_{cp} = \int_{p}^{\delta} \frac{\sigma(z)dz}{X-p}; \ \text{при} \ m \ge 1.$$
(2)

Здесь:

 δ – глубина фронта коррозийного повреждения; X или X_t – высота зоны сжатия (или растяжения) изгибаемого элемента; z – соответствующая ордината, отсчитываемая от оси нулевого напряжения; $m, \alpha, \delta_{\kappa p}$ – эмпирические параметры, зависящие от уровня расчетных средних напряжений (2), сочетания номинации бетона и свойств коррозионной среды [4]; R_b – предел прочности бетона при сжатии (R_{bt} – при растяжении).

Подчеркнем, что случай $m \ge 1$ для функции δ отражает так называемый «затухающий» характер продвижения повреждений, при котором повреждения стабилизируются, а самопродвижение коррозионной среды обнуляется в пределах бетонного тела (рис. 2).

$$\delta \leq X$$
 (или $\delta_{t} \leq X_{t}$), (3)

где значение (3) означает принадлежность к зоне неизменного знака напряжений (сжатия или растяжения).

Именно этот тип кинетики коррозийных повреждений и ограничивает область проводимых исследований. Это обуславливает рамки анализа и ограничивает эксплуатационные возможности сооружений и конструкций.

Решения (1) имеют запись [4] и соответствуют (рис. 2):

при
$$m = 1$$
: $\delta(t) = \left[1 - \Delta \delta(t_0, t_0) e^{-\alpha(t-t_0)}\right] \delta_{\kappa p};$ (4)

при
$$m > 1$$
 (2,3,4...): $\delta(t) = \left\{ 1 - \left\langle \left[\Delta \delta(t_0, t_0) \right]^{[(-m)+1]} \alpha \left[(-m) + 1 \right] t - t_0 \right] \right\rangle^{\frac{1}{[(-m)+1]}} \right\} \delta_{sp}.$ (5)

¹Научный консультант В.М. Бондаренко, д-р техн. наук, профессор, академик РААСН.

²п. 21, перечня критических технологий РФ, утвержденного Указом Президента РФ от 07.07.2011 г. № 899).

Рис. 1. График зависимости m от η

где:
$$q_{m0} = m_0; \ q_{m2} = \frac{1}{0,41} \Big[\Big(m_0 - m_{0,9} \Big) + 2(m_{max} - m_0) \Big]; \ q_{m1} = \frac{1}{0,45} \Big[\Big(m_{max} - m_0 \Big) - 0.45^2 q_{m2} \Big].$$
 (7)

1.

Отметим, что аналогично вычисляются значения $\alpha(\eta)$ и $\delta_{\kappa p}(\eta)$, которые учитываются, как для $m(\eta)$, так и для каждого сочетания номинации бетона и характеристик агрессивной среды. $q_{m1} = \frac{1}{0,45} [(m_{max} - m_0) - 0,45^2 q_{m2}].$ (7) В соответствии с этим принимается, что коррозионные повреждения в пределах общей толщины бетонного тела распределяют так, что на границе контакта с агрессивной средой сохранение характеристик силового сопротивления бетона является наименьшим, а на глубине

Рис. 2. Схема распределения коррозийных повреждений в сжатой зоне изгибаемого железобетонного элемента: *h* – общая высота сечения; *h*_o – рабочая высота сечения; *a*_s – защитный слой бетона для арматуры;

b₀ – ширина сечения; X^{*} – высота сжатой зоны; δ – глубина коррозионных повреждений; p – толщина неповрежденного слоя бетона; A_s – площадь сечения растянутой арматуры; ω_s – коэффициент сохранения силового сопротивления арматуры; K^{*} – функция (кривая) сохранения механических свойств

Функция
$$K^{*}(z)$$
 принимается в виде [3]:

 $K^{*}(z) = \sum_{i=0}^{i=2} a_{i} z^{i}; \ \frac{dK^{*}(z)}{dz} = \sum_{i=0}^{i=2} i a_{i} z^{i-1},$

при
$$z = p$$
, $K^*(p) = 1$, $\frac{dK^*(z)}{dz}\Big|_{z=p} = 0$; (9)

при
$$z = p + \delta$$
, $K^*(p + \delta) = K_1^* < 1$, (10)

где значения a_i находится из условий:

откуда:
$$a_0 = 1 + \left(K_1^* - 1\right) \left(\frac{p}{\delta}\right)^2$$
; $a_1 = -2\left(K_1^* - 1\right) \frac{p}{\delta^2}$; $a_2 = \frac{K_1^* - 1}{\delta^2}$. (11)

(8)

Между тем известно, что при нагружении бетона его структура меняется [3]: вначале бетон уплотняется, его проницаемость уменьшается и, следовательно, продвижение коррозийного фронта тормозится. Это влияет на функцию m (а также на α и $\delta_{_{\kappa p}}$); график функции $m(\eta)$ в зависимости от напряжений η приведен на рис.

Кривая (рис. 1) аппроксимируется усеченным степенным рядом [4]:

$$m(\eta) = \sum_{i=0}^{i=2} q_{mi} \eta^{i},$$
 (6)

$$a_{0} = 1 - \left(\frac{p}{\delta}\right)^{2}; \ a_{1} = \frac{2p}{\delta^{2}}; \ a_{2} = -\frac{1}{\delta^{2}}.$$
 (12)

Отмечается, что поскольку величина параметра m, зависящая от уровня действующих напряжений, переменных вдоль пролета и соответственно вдоль пролета меняется глубина повреждений δ , проходя различные значения, максимум которых может не совпадать с максимумом изгибающих моментов, поскольку расположение опасного сечения неоправданно назначать априорно, а следует вычислять из условия максимума:

$$\frac{d}{dx} \left| \frac{M(x)}{M_{np}^*(x)} \right| = 0.$$
 (13)

Оценивая момент образования трещин в опасном сечении, следует отметить следующее:

– в бетоне растянутой зоны формируется прямоугольная эпюра растягивающих напряжений ($\sigma_{\phi,i} = R_{bi}^*$), скорректированная влиянием коррозийных повреждений;

 в растянутой арматуре напряжения определяются из условия совместного деформирования растянутого бетона \mathcal{E}_{bt} и растянутой арматуры:

$$\varepsilon_{bt} = \varepsilon_s$$
 или $\frac{R_{bt}^*}{E_{bt}^*} = \frac{\sigma_s^*}{E_s'}$ и $\sigma_s^* = \frac{E_s'}{E_{bt}^*} R_{bt}^*$, (14)

где: E_s^* – временный модуль деформации поврежденной коррозией арматуры; E_{bt}^* – временный модуль деформации растянутого поврежденного коррозией бетона при $\sigma_{\phi,t} = R_{bt}^*$; R_{bt}^* – предел прочности бетона на растяжение с учетом влияния коррозийных повреждений;

– в интересах получения наименьшего значения $M^*_{mp,1}$ (для первого приближения расчета) для сжатого бетона в сжатой зоне принимается также прямоугольная эпюра нормальных напряжений сопротивления $\sigma_b = R^*_b$ с корректировкой в зависимости от интенсивности коррозийных повреждений (рис. 3);

– аналогично напряжения в сжатой арматуре принимаются предельными $\sigma'_s = R'_s$ (заметим, при $z^* \ge a'_s$, следует принимать $\sigma'_s = 0$).

Рис. 3. Схема поперечного сечения и силового сопротивления изгибаемого элемента поврежденного коррозией в момент образования трещины:

h – общая высота элемента; h_0 – рабочая высота элемента; b_0 – ширина сечения элемента; – толщина полностью разрушенного бетона сжатой зоны; δ – толщина переходного слоя (частично поврежденного коррозией) в сжатой зоне сечения; δ_i – тоже в растянутой зоне сечения; p и p_i – соответственно толщины поврежденного коррозией бетона в сжатой и в растянутой зонах сечения; X^* и X_i^* – соответственно толщины сжатой и растянутой зон сечения; K_a^* – коэффициент сохранения силового сопротивления растянутой фибры; R_b^* и $R_{b_i}^*$ – предельные значения прочности сжатых и растянутых при изгибе фибр бетона; ω'_s и ω_s – коэффициент сохранения силового сопротивления арматуры

К этому отметим, что наличие сжатой арматуры, приводящее к уменьшению высоты сжатой зоны сечения X^* и увеличению высоты

растянутой зоны $(h - X^*)$, уменьшает жесткость железобетонной балки.

Высота сжатой зоны, вычисляемая из условия равновесия сил на горизонтальную ось [2]:

$$X^{*} = \frac{\omega_{s}Ab_{s} - \omega_{s}'A_{s}'R_{s}'}{b_{0}(R_{b} + R_{bt})} + \frac{R_{b}}{3(R_{b} + R_{bt})}\delta + \frac{R_{b}}{(R_{b} + R_{bt})}z^{*} - \frac{1}{3}(1 - K_{1t}^{*})\frac{R_{bt}}{(R_{b} + R_{bt})}\delta_{t} + \frac{R_{bt}}{(R_{b} + R_{bt})}h.$$
 (15)

С учетом правила сложения сопротивлений жесткость сечения элемента D^* равна сумме жесткостей всех компонентов D_i^* , отсчитываемых относительно оси, проходящей через центр тяжести приведенного сечения:

$$D^* = \sum_{i=1}^n D_i^* = \sum_{i=1}^n A_i E_i r_i^2,$$
 (16)

где: r_i — расстояние от центра тяжести i-ого компонента до центра тяжести приведенного сечения.

Положение центра тяжести приведенного сечения относительно растянутой грани рассчитывается по формуле [2]:

$$y_{u.m.} = \frac{\sum_{i=1}^{n} y_i A_i E_i^*}{\sum_{i=1}^{n} A_i E_i^*} .$$
(17)

Значения A_i и E_i^* вычисляются с учетом влияния коррозийных повреждений. Это дает исходные данные для нахождения момента образования трещин (в первом приближении) и приводит к наименьшей величине момента трещинообразования $M_{mp,1}$.

С учетом [5] запишем:

$$\frac{1}{\rho} = \frac{d^2 U}{dx^2} = \frac{M^*}{D^*}; \ \frac{z}{\rho} = \varepsilon^*; \ \varepsilon_{\phi_l} = \frac{h - X}{\rho}, (18)$$

где:

ho – радиус кривизны; U – функция прогиба;

x – абсцисса сечения; X – высота сжатой зоны; ε_{ϕ_i} – относительное удлинение фибрового растянутого волокна [1],

и, находим значение изгибающего момента:

$$M_{mp,1}^{*} = \frac{K_{i}^{*} \mathcal{E}_{Rt}}{h - X_{1}^{*}} D^{*}, \qquad (19)$$

где:

 $M^*_{mp,1}$ – первое приближенное значение изгибающего момента, при котором в опасном сечении образуется первая трещина; ε_{R} – предельная относительная полная деформация при изгибе растянутого фибрового волокна; K^*_{1r} – коэффициент

сохранения силового сопротивления для фибрового растянутого волокна; X_1^* – высота сжатой зоны; h – общая высота сечения изгибаемого элемента; D^* – жесткость наиболее нагруженного сечения поврежденного коррозией изгибаемого элемента.

Отметим, что полученная величина момента трещинообразования $M^*_{mp,1}$ (первое приближение) обеспечивает дополнительный запас трещиностойкости. Поэтому в реальных условиях для практической оценки ресурса трещиностойкости можно ограничиваться величиной $M^*_{mp,1}$.

При необходимости дальнейшего уточнения $M^*_{np.,1}$ можно заменить расчетные предельные силовые характеристики сжатой зоны на те характеристики, которые следуют из $M^*_{np.,1}$ (рис. 4).

Этот прием состоит в том, что в сжатой зоне фибровые характеристики бетона R_b^* приближенно заменяются на $\sigma_{b,\phi}$:

$$\sigma_{b,\phi} = \left(\frac{M_{mp,1}^*}{M_{np}^*}\right)^{n_{\phi}} R_b, \ \left(\eta_{\phi} = \frac{1}{2}\right), \tag{20}$$

напряжения в сжатой арматуре из условий совместимости деформаций с бетоном принимаем:

$$\sigma'_{s} = \frac{E'_{s}}{E^{*}_{b,\phi}} \sigma_{b,\phi}, \qquad (21)$$

Рис. 4. Схема поперечного сечения и силового сопротивления образований трещин изгибаемого элемента поврежденного коррозией для второго приближения

причем при $z^* \ge a'_s$ напряжении σ'_s считаем нулевым $\sigma'_s = 0$, и далее повторно применяется алгоритм (13)–(21).

Таким образом, построен метод оценки ресурса силового сопротивления образования трещин, в поврежденных коррозией изгибаемых железобетонных элементах находящихся в условиях эксплуатации.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Байдин, О.В. Трещиностойкость стержневых сборно-монолитных железобетонных конструкций / О.В. Байдин. – Белгород: Изд-во БГТУ, 2010. – 101 с. – ISSN 978-5-361-00147-7.

2. *Байдин, О.В.* Силовое сопротивление образованию трещин поврежденного коррозией железобетона / О.В. Байдин // Вестник БГТУ им. В.Г. Шухова. – 2012. – № 1. – С. 11 – 14. – ISSN 2071-7318.

3. Бондаренко, В.М. Некоторые фундаментальные вопросы развития теории железобетона / В.М. Бондаренко // Строительная механика инженерных конструкций и сооружений. – 2010. – № 2. – С. 5 – 11. – ISSN 0039-2383.

4. Бондаренко, В.М. Феноменология кинетики повреждений бетона железобетонных конструкций, эксплуатирующихся в агрессивной среде / В.М. Бондаренко // Бетон и железобетон. – 2008. – № 2. – С. 25 – 28. – ISSN 0005-9889.

5. Феодосьев, А.И. Сопротивление материалов / А.И. Феодосьев. – М.: Изд-во Наука, Физматгиз, 1970.